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Abstract. This paper quantifies the benefits of discretion in the enforcement of en-

vironmental regulations. We identify and estimate a structural model of regulator-

discharger interactions, exploiting an increase in the enforcement stringency of water

pollution regulations in California. Our estimates indicate that most of the hetero-

geneity in punishments for observably similar violations is due to heterogeneity in

discharger compliance costs rather than heterogeneity in regulator preferences. We

find that removing the discretion of regulators to tailor punishments to discharger

attributes would raise enforcement costs and decrease compliance by dischargers

with high social harms of violations.
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1. Introduction

Regulations are often written flexibly so that the authorities in charge of enforcing

them can do so judiciously. For example, following a particular violation, enforcement

authorities may be able to choose from a range of possible punishments, considering

a host of aggravating and mitigating factors that are, at times, subjective. One

reason to allow discretion in enforcement is that it might be impossible, in practice,

for the written regulation to specify all possible contingencies—especially when the
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circumstances surrounding any given violation, such as the compliance costs borne by

the regulated entity and the resource-constraints faced by the enforcement authority,

can vary considerably from one case to another. However, without proper incentives,

regulators may pursue their own interests rather than applying their expertise to make

an appropriate judgment as a social planner (Stigler, 1971; Peltzman, 1976). In this

paper we identify and estimate a game-theoretic model of regulation to empirically

evaluate regulatory discretion in the context of the enforcement of water quality

regulation in California.

To begin with, we argue that the enforcement policies of the Clean Water Act

and California’s Porter-Cologne Water Quality Control Act leave room for regulatory

discretion, giving rise to concerns over inconsistencies in the enforcement of these

laws within the state. We then provide empirical evidence that regulators use their

discretion, by documenting disparities in penalties—that is, variation in penalties,

conditional on violation attributes. To do so, we employ our unique data containing

the universe of recorded water quality violations in 2000–2014, as well as all monetary

penalties associated with each individual violation. By linking violations and penal-

ties, these data allow us to gauge regulation enforcement standards, without having to

make an assumption on the time lag between violations and enforcement actions.1 In

our analysis, we focus on domestic wastewater treatment facilities, which are among

the most important violators of water quality regulation in California. We find that

the penalty disparities are correlated with various facility and local attributes, such as

the facility’s size and age, and demographic, economic, and environmental attributes

of the location. In addition, the expected penalty for a violation increases when there

are other concurrent violations by the same facility.

Becker (1968) provides a theoretical justification for disparities in punishment,

by considering the optimal amount of enforcement when it is costly to impose sanc-

tions. Under this framework, disparities in punishment may have a few, non-exclusive

sources: heterogeneity in the private violation gains, the social harms of violations,

and the costs of punishment. Our structural approach helps disentangling these

sources of disparities and better understanding regulatory discretion. We adopt the

model of Mookherjee and Png (1994), which generalizes Becker (1968) and incorpo-

rates the main institutional features of our setting: facilities choose a continuous, as

1This feature of our data is an important advantage, relative to the data sets employed by the existing
literature on the enforcement of the Clean Water Act (Magat and Viscusi, 1990; Earnhart, 2004a,b;
Shimshack and Ward, 2005; Gray and Shimshack, 2011), where the link between an enforcement
action and a violation is not observed.
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opposed to binary, level of effort to reduce violations; the regulator can impose pun-

ishment at varying rates, depending on the level of offense; and facilities may have

private information on the costs of complying with regulation.

In the model, for each facility, the regulator sets a penalty schedule. Given these

schedules, the facilities exert costly effort to affect the extent of compliance. The

regulator knows the distribution of compliance cost types of each facility, but observes

neither the realized types nor the facilities’ efforts, so the penalty is a function of the

violations only. In determining the penalty schedules, the regulator minimizes the sum

of the facilities’ expected compliance costs, the cost from environmental hazards of

violations, and the enforcement costs associated with imposing penalties. Departing

from the normative framework of Becker (1968) and Mookherjee and Png (1994), we

allow the latter two costs to partially reflect the regulator’s private concerns, and we

refer to these costs as the regulator preferences.

We use data on violations and penalties to identify and estimate the model, ex-

ploiting a set of institutional changes in the mid-2000s, which were aimed at reducing

the administrative burden of enforcement and making the compliance information

more accessible to the public. These changes include: the launch of a new computer-

ized system to track and manage information about violations and enforcement; and

the establishment of a new statewide office to support enforcement activities. We

document that, after these changes, the average amount of penalties increased and

violations became less frequent. Moreover, we find little evidence that the compliance

cost structure changed during the period. This institutional feature provides a unique

opportunity to identify the dischargers’ compliance cost function.

We provide conditions under which the model is non-parametrically identified. Our

identification strategy is closely related to two recent papers, d´Haultfoeuille and

Février (2020) and Luo, Perrigne, and Vuong (2018), both of which address the

identification and estimation of adverse selection models. The former study focuses

on the informed party, and employs exogenous variation in the contracts (which,

in our application, is provided by the mid-2000s institutional changes) to identify

that party’s distribution of types (the distribution of facilities’ compliance costs).

This approach does not rely on the regulator’s optimality. Conversely, the latter

paper builds upon the optimality conditions of both the informed and non-informed

parties to identify the model primitives without necessarily relying on any external

variation. By combining both approaches, we identify a more general model than the

ones considered by these two papers. We develop a multi-step estimator that closely
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follows the constructive identification strategy. In this regard, our paper relates to the

structural empirical literature on regulation (Wolak, 1994; Thomas, 1995; Timmins,

2002; Gagnepain and Ivaldi, 2002; Brocas, Chan, and Perrigne, 2006; Ryan, 2012;

Gagnepain, Ivaldi, and Martimort, 2013; Oliva, 2015; Fowlie, Reguant, and Ryan,

2016; Lim and Yurukoglu, 2018; Abito, 2020).

We find suggestive evidence that the regulators tailor the enforcement policies

to local residents’ preferences. Specifically, the estimation results indicate that the

regulators tend to consider the violations by a facility located in a county with a

high average household income as more environmentally damaging and less costly

to punish than those by other facilities. To the extent that environmental goods or

amenities are a normal good, this finding is consistent with the idea that regulators

may reflect local preferences on water quality when they enforce the water regulation.

Moreover, we find that the estimated enforcement costs are negatively correlated

with the percentage of voters supporting California Proposition 84 in 2006, which

authorized the issuing of bonds to fund water quality improvement projects, at the

county where the facility is located.

Given our estimates of both the compliance cost structure and the regulator pref-

erences, we quantify the extent to which the heterogeneity in regulator preferences

explains the observed disparities in penalty stringency. In doing so, we consider a

hypothetical scenario in which all facilities are subject to a regulator with the same

preferences—set at the median across our preference estimates. Not surprisingly, we

find that, relative to the current regime, homogenizing the regulator’s preferences

would reduce the dispersion of penalty stringency across facilities. However this re-

duction is by a moderate extent, 11 percent.

We also assess the implications of limiting regulatory discretion. As discussed ear-

lier, our descriptive data analyses reveal two main channels through which regulatory

discretion in enforcement manifests itself: penalty adjustments that vary with (i) fa-

cility and local attributes and (ii) the violator’s conduct in terms of other violations

during the period. In light of these findings, we consider two counterfactual scenarios,

limiting each of these channels at a time. First, we evaluate a one-size-fits-all policy,

where all facilities face the same penalty schedule. Then we examine a linear policy,

in which the regulator is constrained to set a per-violation penalty amount. Here we

assume that the regulator chooses penalty schedules that minimize the sum of the

costs from compliance, environmental hazards, and enforcement across all facilities,

under the constraint imposed by each scenario. We find that violations, on average,
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would slightly decrease under both scenarios (roughly six percent), but at the expense

of an increase in total penalties. More importantly, we measure the penalty savings

associated with allowing for each type of regulatory discretion; for example, we show

that a linear penalty policy that would induce facilities to adhere to the compliance

level of the full discretion scenario would lead to 10 percent higher penalties in total.

We also find that implementing the one-size-fits-all policy would lead to more viola-

tions by facilities perceived to have high benefits of compliance, such as those posing

a high treat to water quality.

One of the perils of regulatory discretion stems from the potential misalignment

between the preferences of the regulator and those of the social planner. In the

absence of external estimates of the latter, we cannot quantify the effects of such

misalignment on enforcement and compliance. Instead, we assess an upper bound of

the extent of violations that might be associated with inappropriately low perceptions

of the benefits of compliance by the regulator, possibly driven by corruption or lack

of dedication. To do so, we consider an alternative regulator who highly values the

environmental benefits of compliance and perceives enforcement costs as minimal for

all facilities. We find that under such a scenario, the number of violations would fall

by half and the assigned penalties would increase by 77 percent.

Our paper contributes to the empirical literature on regulatory mechanisms and

the incentives of regulators. Existing studies show evidence on various determinants

of enforcement stringency, including local economic conditions, public health risk,

pressure from special interest groups, the political ideology of the government, and

the agency budget.2 Because the benefits and costs of a regulation are not directly

observed, it is difficult to empirically evaluate the regulatory mechanism using a

reduced-form approach. Our analysis, along with the recent papers by Duflo, Green-

stone, Pande, and Ryan (2018) and Blundell, Gowrisankaran, and Langer (2020),

provides a step forward to this end, by identifying and estimating a regulation model.

The former study uses data from a field experiment in India that doubled the in-

spection frequency for a random group of manufacturing plants, and quantifies the

extent to which regulator’s discretion over what plants to target helps enforcement.

The latter assesses the gains from the Clean Air Act’s dynamic enforcement, where

2See Scholz (1986); Deily and Gray (1991); Cropper, Evans, Berardi, Ducla-Soares, and Portney
(1992); Gray and Deily (1996); Helland (1998); Agarwal, Lucca, Seru, and Trebbi (2014); Gordon
and Hafer (2014); Holland (2016). Recently, Burgess, Olken, and Sieber (2012), and Jia and Nie
(2017) provide suggestive evidence of regulatory capture in developing countries, and Leaver (2009)
shows that regulators’ desire to avoid public criticism can lead to inefficiency even without capture.
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repeat offenders are placed in high priority violator status and receive more frequent

inspections and higher penalties. The results of these papers, consistent with ours,

indicate that limiting regulatory discretion may increase penalties and enforcement

costs. Unlike theses two recent papers, we estimate regulator preferences. Having

estimates of these preferences allows us to examine their determinants, investigate

their role in explaining penalty disparities, and predict how regulators would respond

to policies limiting their discretion.

The rest of the paper is organized as follows: Section 2 describes how the water

quality regulations in California are enforced and provides details of the institutional

changes. In Section 3, we present the data and some descriptive statistics. Section

4 contains the theoretical model, and Section 5 describes the identification and esti-

mation of the structural model. Section 6 presents the estimation and counterfactual

results. We conclude in Section 7.

2. Institutional Background

2.1. Water Quality Regulation and Enforcement. Both the Clean Water Act

and the state’s Porter-Cologne Water Quality Control Act govern the water quality

regulation in California. The former act created the National Pollutant Discharge

Elimination System (NPDES) to regulate facilities that discharge pollutants from

any point source, such as a pipe or a ditch, into surface waters, including lakes,

rivers and the ocean. Although the program is federal, the state government has

administered it since the authorization by the Environmental Protection Agency in

1973. An NPDES permit is typically a license for a facility to discharge a specified

amount of a pollutant into a receiving water under certain conditions, where the limits

on the concentration of the pollutants are based on both the availability of pollution

control technologies and the water quality standards of the receiving water.

Both laws require that permittees periodically submit discharge monitoring reports

with information about the quantity and quality of their effluents. They are required

to sample receiving waters, to perform bioassays, and to measure and report the

toxicity potential of the discharges. Enforcement actions are mostly based on these

reports. Our data regarding all NPDES violations in the state during the period of

2000-2014 indicate that 95 percent of the recorded violations were detected from per-

mittees’ self-reports, while the remaining 5 percent were detected during an inspection

or triggered by a complaint, referral, or sewer overflow.
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The California Water Boards, consisting of the State Water Resources Control

Board and nine Regional Water Quality Control Boards, are in charge of enforcing

the water quality regulations in the state. The state board oversees the regional

boards, which have primary jurisdiction in issuing permits, monitoring water quality,

and taking enforcement actions against violating dischargers. Each regional water

board consists of seven board members, who are appointed by the governor to serve

four-year terms once they are confirmed by the state senate. The board members

do not serve multiple regional boards simultaneously; they must reside in, or have a

principal place of business within, the region that a given board covers. They serve

part-time and conduct their business at regular meetings, which are normally held

ten times per year to make decisions on water quality matters.3 The board members

rely on the staff, most of whom are engineers, geologists, and biologists, to conduct

the day-to-day tasks associated with water quality management, such as setting water

quality standards, drafting permits, and conducting enforcement activities.

2.2. Penalty Determination. For an initial determination of compliance, the re-

gional board staff screens the self-monitoring reports. When a violation is identified,

the staff issues a formal notice to clarify errors, vague permit language, or other areas

of disagreement between the discharger and the staff. If a violation is confirmed,

the case is then evaluated for enhanced enforcement, such as an administrative civil

liability (ACL), which might result in a monetary penalty. To impose an ACL, the

staff must make an ACL complaint, followed by a 30-day public comment period.

The notice for the comment period is posted on the water board’s website and may

also be mailed to interested parties or published in a local newspaper. The discharger

may waive its right to a board hearing and pay the liability, negotiate a settlement,

or appear at the hearing to dispute the ACL.

The enforcement policy (California State Water Resources Control Board, 2002,

2010b), provides a detailed penalty calculation methodology. It involves determin-

ing the initial penalty amount and then adjusting it to address various factors. The

initial penalty amount is based on the extent and severity of the violation, the sen-

sitivity of the receiving water, and any impacts of the violation on beneficial uses of

the affected water. The initial penalty amount is then adjusted to reflect a number

of factors. Some of the factors are associated with the violator’s conduct, such as

3Based on the description of each regional board member available online, we find that, on average,
a regional board consists of 4 members from the private sector (e.g., a law firm partner or a farm
owner), 1-2 members from the public sector (e.g., a mayor), and 1-2 members from the academia.
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whether the violation was accidental as opposed to intentional or negligent; and if

there is a pattern of (intentional) repeat violations. The remaining adjustment fac-

tors are: the violator’s ability to pay and continue in business; the economic benefit

of the violations; costs of investigation and enforcement including any expert wit-

ness expenses; environmental justice issues related to whether the violations have a

disproportionate impact on a particular disadvantaged group of people; and the max-

imum/minimum liability amounts. After these adjustments by the water board staff,

the final penalty amount may be further modified by the water board, possibly as a

result of negotiations with the violator.

An important regulation associated with a minimum liability amount is that seri-

ous or multiple non-serious NPDES violations are subject to a mandatory minimum

penalty (MMP) of $3,000 per violation. A serious violation is associated with a dis-

charge above limits of a Group I (Group II) pollutant by 40 percent (20 percent)

or more.4 As for non-serious violations, the minimum penalty applies when such

violations occur four or more times in any period of six consecutive months.

2.3. Regulatory Discretion. The enforcement policy provides guidelines for calcu-

lating the initial penalty amount and adjustments, but these guidelines leave room

for discretion by the water board staff in defining and quantifying each factor in the

calculation of the penalty amount. In addition, the regional water board members

may further change the penalty amount determined by the staff.5

Discretion in enforcement and autonomy of the regional water boards are in part

rooted in the Dickey Water Pollution Act of 1949. This act created the regional

water boards, acknowledging that water pollution problems are regional: they are

affected by rain and snowfall, the configuration of the land, and population density, as

well as recreational, agricultural, urban and industrial development. For this reason,

the boundaries of the regional boards follow mountain chains and ridges that define

watersheds, as opposed to political or administrative divisions like counties or cities.

In addition, enforcement resources are different across regional water boards. For

example, the average number of permits per compliance and enforcement staff during

4The list of the pollutants of Groups I and II is in Appendix A to Section 123.45 of Title 40 of
the Code of Federal Regulations. Group I pollutants include biological oxygen demand and total
suspended solids; and chlorine, copper, and cyanide are examples of Group II pollutants.
5For the penalty actions of 2009–2015, we have data on the penalty amount assessed by staff as well
as the final penalty amount. We find that the final penalty amount, as determined by the regional
water board, differs from the staff assessment for 24 percent of the penalty actions. See Appendix
A.3.2 for more details.
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fiscal year 2006–2007 varies from 109 in the Colorado River board to 539 in the Los

Angles board (Table A4 in Appendix A.4).

There have been concerns that the oversight of the regional boards by the state

government might be insufficient, leading to inconsistencies in the implementation

of the regulation across the different regions (Little Hoover Commission, 2009). Re-

lated to these concerns, there have been several reform proposals aiming at greater

centralization of water quality regulation decisions at the state level. For example,

in 2005, Assembly Bill 1727 would let the state board appoint the executive offi-

cer of each regional board. More drastically, the California Performance Review, a

task force assembled in 2004 by the state government to restructure the state ad-

ministration, proposed to abolish both the state and the regional boards, and shift

their environmental regulation duties to a new, centralized division of the California

Environmental Protection Agency (California Legislative Analyst’s Office, 2004).

2.4. Institutional Changes in Enforcement. In 1999, the Clean Water Enforce-

ment and Pollution Prevention Act (SB 709) amended the California Water Code.

To implement this new law, the state and regional water boards undertook various

administrative efforts. Two of the major changes during our period of study are the

launch of the California Integrated Water Quality System (CIWQS) in July 2005 and

the establishment of the Office of Enforcement in July 2006.6 For convenience, we

often refer to these two changes as the 2006 institutional changes.

These changes have decreased the administrative costs borne by the regional water

boards in enforcing the water quality regulations. First, the new computer system,

CIWQS, tracks and manages information about permittees, permits, inspections, vi-

olations, and enforcement activities. It also allows for the online submittal of self-

monitoring data by permittees. Previously, dischargers would submit hard copies of

the self-monitoring reports, which would then need to be manually entered into the

system and reviewed by the staff. This system dramatically increased efficiency and

enabled more resources to be devoted to enforcement.7 Second, the Office of Enforce-

ment was established to provide statewide enforcement and to support the regional

6In November 2006, Governor Schwarzenegger was reelected. The timing of these two administrative
actions by the state government may be potentially related to the incumbent governor’s reelection
motives (List and Sturm, 2006), but this is beyond the scope of our analysis.
7The introduction of the computerized system did not lead to a decrease in the government budget
for the water boards. Based on the historical budget publications, made available online by the state
department of finance, the annual budget allocated for the support of the water boards regarding
water quality issues (the item numbered as 3940-001-0001 until the 2008–9 budget or 3940-001-0439
after) has been steady at around $480 million in 2010 dollars.
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water boards’ enforcement programs. The staff of the office regularly meet with rep-

resentatives from the regional water boards to discuss enforcement matters and give

feedback on enforcement approaches. Besides providing support to the regional water

boards, the office has the authority to perform independent enforcement actions.

2.5. Wastewater Treatment Facilities. We focus on the facilities that treat do-

mestic wastewater and discharge the treated water. Based on our data, there are in

total 288 such facilities that had an active NPDES permit during 2000–2014. They

are responsible for the vast majority (73 percent) of effluent and water quality vio-

lations statewide during the period of study. A clear assessment of the compliance

behavior of these facilities is thus particularly important for the better understanding

of water pollution regulation in general.

Wastewater treatment facilities reduce the amount of oxygen-demanding substances,

such as organic matter and ammonia, disinfect and chlorinate wastewater to decrease

the concentration of infectious micro-organisms, and remove phosphorus, nitrogen,

and inorganic or synthetic organic chemicals. The process for treating wastewater

includes a primary stage, in which solids are removed, and a secondary stage, which

treats biological and dissolved organics. In addition, a tertiary stage may be used

for disinfection and treatment of nitrogen, phosphorus, and other pollutants. The

Clean Water Act requires municipal wastewater treatment plants to implement at

least secondary stage treatment.

A number of factors make it harder for some facilities to comply with the permit

conditions than others. Facilities differ substantially in age, size, treatment tech-

nology, and capacity utilization rate (see Table 1 in Section 3). They also differ in

their finances. For example, although the state and the federal governments pro-

vide subsidized financing to water treatment projects through the Clean Water State

Revolving Fund (CWSRF), facilities located in small or disadvantaged communities

often lack the resources and in-house expertise necessary to apply for grants and de-

termine which types of project are the most appropriate for their needs (California

State Water Resources Control Board, 2008). Moreover, weather conditions and ex-

isting pollution levels, which can substantially obstruct compliance efforts, vary both

across facilities and over time.

3. Descriptive Statistics

3.1. Data Sources and Variables. We draw data from the California Integrated

Water Quality System (CIWQS) database for the universe of NPDES violations and
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enforcement actions during 2000–2014.8 The database provides various attributes of

each facility, which we include as control variables in our analyses: the EPA designa-

tion of the facility as a major facility;9 the water board designation of the extent of

threat that the facility poses to the receiving water, ranging from 1 to 3;10 the starting

year of its operation; and the unit of the local government that runs the facility (a

county or city government or a special district). We collect further facility-level at-

tributes from the Clean Watersheds Needs Survey data from the US Environmental

Protection Agency: the treatment level or technology (primary, secondary, or ad-

vanced); the extent of capacity utilization, defined by the ratio of the actual flow to

the designed flow; and the size of population served by the facility.11

We complement our data with the attributes of the county or the watershed in which

the facility is located. As for the county-level attributes, we use various sources: the

American Community Survey for average household income; the Census for popula-

tion and water use; and the California Irrigation Management Information System for

precipitation. The precipitation data are provided at the 253 weather stations level,

which we aggregate at the county level based on the stations’ locations. From the

California Secretary of State website, we obtain the vote shares for the 2006 ballot

proposition 84 to authorize $5.4 billion in bonds to fund various water projects. Lastly,

we employ water pollution data from the STORET and National Water Information

System, provided by the US Geological Survey. We focus on the dissolved oxygen

(DO) saturation of water, which represents the dissolved oxygen level divided by the

maximum oxygen level given the water temperature. This is one of the most common

omnibus measures of water quality because, among other reasons, it responds to a

wide variety of pollutants (Keiser and Shapiro, 2019). We closely follow the details

and steps taken to clean the water pollution data in Keiser and Shapiro (2019) and

construct the DO saturation measures for each facility by taking the average of water

pollution readings within the area that shares the same 5-digit hydrologic unit code

8Data from prior to July 2005, when the water boards launched the CIWQS, were imputed retroac-
tively into the CIWQS.
9For the NPDES program, the EPA designates certain facilities as major, depending on their in-
dustrial category or the amount of flow. Major facilities generally have flow greater than 1 million
gallons per day or a discharge that poses a substantial threat to water quality.
10Category 1 for the extent of threat to water implies that discharges of waste could cause the long-
term loss of a designated beneficial use of the receiving water, such as the loss of drinking water
supply and the closure of an area used for water contact recreation. The other two categories are
less serious, either short-term (Category 2) or minor (Category 3).
11Both treatment level and capacity utilization have been considered as important factors for com-
pliance costs of wastewater treatment facilities in the engineering literature (Weirich, Silverstein,
and Rajagopalan, 2011; Suchetana, Rajagopalan, and Silverstein, 2016; Rahm et al., 2018).



12 KARAM KANG AND BERNARDO S. SILVEIRA

Table 1. Summary Statistics: Wastewater Treatment Facilities

Before (2000-2005) After (2009-2014)
Mean SD Mean SD

Quarterly Compliance and Enforcement

Any effluent MMP violation 0.23 0.42 0.17 0.37

Number of effluent MMP violations 1.39 8.32 1.10 5.50

Any penalty upon effluent MMP violation 0.59 0.49 0.77 0.42

Penalty per effluent MMP violation ($)† 2,249 4,721 2,624 4,641

Facility Technological/Cost Attributes

Major facility 0.75 0.44 0.75 0.43

Design flow (million gallons per day) 17.83 52.32 19.24 54.88
First year of operation 1982.8 5.23 1982.9 5.30

1982-1987 0.69 0.46 0.70 0.46
1988- 0.06 0.23 0.05 0.23

Advanced or tertiary treatment 0.33 0.47 0.40 0.49

Capacity utilization rate (%) 76.15 38.84 72.62 17.72

Over 87% 0.26 0.44 0.24 0.43
Resident population within the service area 94,858 297,458 157,321 476,886

Below 10,000 0.36 0.48 0.35 0.48
Run by a special district 0.39 0.49 0.40 0.49

High threat to water quality (by the Board) 0.53 0.50 0.55 0.50

Time-varying Quarterly Local Attributes

Precipitation (inches) 6.41 7.49 5.05 6.05

Below 25% of historic quarterly averages 0.21 0.41 0.28 0.45
Over 75% of historic quarterly averages 0.28 0.45 0.22 0.41

Average dissolved oxygen saturation (%) 10.83 12.92 12.62 13.44

Below 17%, “swimmable” 0.71 0.45 0.55 0.50

Time-invariant County Attributes

Fresh water use for irrigation in 2010 (%) 0.54 0.32 0.54 0.32

Average household income in 2010 ($K) 59,275 14,070 59,145 14,198

Population density per miles2 in 2010 764.99 1,754.8 762.87 1,788.8

Vote share for the 2006 water proposition (%) 50.21 8.94 50.24 9.06

Number of observations 6,159 6,620

Number of facilities 228 215

Notes: For the statistics on violations, we use the sample of 2002–2005 for the period before
the 2006 institutional changes and 2009–2014 for the post-change period. We do not use the
observations of 2000–2001 for analyzing the extent of compliance because we suspect that not
all violation records are in the database for this early period. As for the penalty statistics,
we employ the effluent MMP violations of 2000–2001 and 2009–2010 and the follow-up penalty
actions for four years. Acknowledging that the 2006 institutional changes may take time to be
fully incorporated, we do not employ the observations of 2006–2008. The key patterns found in
the table are robust to our choice of the periods. †. The average amount of total penalty per
effluent or water quality MMP violation that occurred during three months, accounting for the
penalties assessed within four years of the occurrence of the violation.
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as the facility during the previous two years. Following the same reference, we use the

DO saturation cutoff of 17 percent to define surface water as “swimmable.” Table 1

provides summary statistics of all variables mentioned above for the 228 wastewater

treatment facilities used in our analysis.12

3.2. Scope of Analysis. We focus on effluent or water quality violations subject

to the mandatory minimum penalty (MMP) of $3,000. During the period of study,

there are in total 48,155 violation records by domestic wastewater treatment facilities,

and 19,740 (41 percent) of these records are categorized as MMP violations. Almost

the entirety (99 percent) of the MMP records are associated with effluent or water

quality violations.13 Some MMP violations are exempt from penalty by the State

Water Code. We focus on non-exempt MMP violations only. As described in Section

2.2, MMP violations are either serious in the violation extent or chronic. Therefore,

the violations that are not subject to the MMP regulation are relatively insignificant

violations that were not repeated more than three times within six months.

3.3. Compliance and Enforcement Over Time. Following the literature on wa-

ter quality regulation (Magat and Viscusi, 1990; Earnhart, 2004a,b; Shimshack and

Ward, 2005; Gray and Shimshack, 2011), we assess compliance using the self-reported

data. Two important features of the NPDES program ensure the reliability of the

self-monitoring reports. First, the water boards conduct frequent inspections on the

facilities. The inspection records show that 86 percent of the wastewater treatment

facilities in our data received at least one inspection per year. Second, intentional

misreporting can be punished by criminal sanctions to the responsible employees.14 If

an employee has accurately reported operation conditions not in compliance with the

NPDES permit, he/she cannot be held liable in a suit, because meeting the permit

requirements is the responsibility of the permitted facility, not of that employee.

Table 1 shows that both compliance and enforcement stringency are higher after the

institutional changes which we described in Section 2.4. The average number of MMP

12Among the 288 domestic wastewater treatment facilities active during 2000-2014 in our dataset,
we exclude the following 60 from our analysis: (i) 48 facilities that were not matched to the Clean
Watersheds Needs Survey Data; (ii) the only two facilities in Region 6 (Lahontan); and (iii) ten
facilities owned by business, community organization, or the federal government.
13The remaining 142 MMP violation records are regarding the timing of self-reports (126), order
conditions (12), deficient monitoring (2), and enforcement actions (2).
14According to Section 122.22(d) of Title 40 of the Code of Federal Regulations, employees signing
any report required by the permits must make a certification that they are aware of significant
penalties for submitting false information, including the possibility of fines and imprisonment for
misreporting violations.
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Figure 1. Compliance and Enforcement
.4

.5
.6

.7
.8

F
ra

ct
io

n 
of

 F
ac

il
it

ie
s 

w
it

ho
ut

 a
 M

M
P 

V
io

la
ti

on

2000 2002 2004 2006 2008 2010 2012 2014
Year

(a) Fraction of Facilities in Compliance

50
0

10
00

15
00

20
00

25
00

30
00

35
00

A
ve

ra
ge

 P
en

al
ty

 p
er

 a
 M

M
P 

V
io

la
ti

on
 (

in
 2

01
0 

U
S

D
)

2000 2002 2004 2006 2008 2010
Year of Violation

(b) Average Penalty per MMP Violation

Notes: Panel (A) shows the fraction of the domestic wastewater treatment facilities without an
effluent MMP violation for a given year. In Panel (B), we provide the average penalty per effluent
MMP violation assessed within 4 years of the occurrence of the violation. Note that the 2006
institutional changes affected the within-4-year penalty for the violations that occurred in 2002 and
after. The shaded areas represent the 95 percent confidence intervals.

violations per quarter by a domestic wastewater treatment facility decreased from 1.39

in the 2002-2005 period to 1.10 in 2009-2014, and the average penalties per MMP

violation within four years of the violation’s occurrence increased from $2,249 in 2000-

2001 to $2,624 in 2009-2010.15 The CIWQS database links each enforcement action

with all associated violation records, which allows us to measure the enforcement

stringency without having to make an assumption on the length of a lag before an

enforcement action is taken.16

Figure 1 provides suggestive evidence that the aggregate changes in compliance

and enforcement are associated with the institutional changes in 2006. First, Panel

(A) in the figure shows that the faction of the facilities without an effluent MMP

violation per year is relatively stable up until 2006, and then it substantially increases.

Second, Panel (B) shows that, focusing on penalties imposed within four years of the

15Penalties may occur even after four years of the occurrence of a violation, but given the length of
our panel data (fifteen years) and the usual length of a permit (five years), we focus on the four-year
window. A large fraction of penalty actions occurs within four years: for example, based on 937
effluent or water quality MMP violations that occurred in 2005 and were penalized by the end of
2014, the average lag before the first penalty record is 2.56 years, with a 90 percentile of 3.93 and a
99th percentile of 7.60 years.
16When a penalty action is associated with multiple violation records, we divide the amount by the
number of the linked violations to calculate the penalty amount for each individual record.
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occurrence of a violation, the average penalty for a violation of 2006–2011 ($2,669)

is greater than the counterpart for a violation of 2000–2002 by $1,300, which is a 95

percent increase.17 For violations that occurred in 2003–2005, the average penalty per

violation is increasing, which is expected because the 2006 institutional changes were

retroactive—a large fraction of the backlogged MMP violations that had not yet been

penalized were penalized after the changes. Because the length of the period affected

by the 2006 institutional changes within the four-year penalty window increases as

the violation date approaches 2006, we observe that the average penalty per violation

increases during 2003–2005 and then is constant from 2006 onward.

These changes may have been driven by time-varying factors which may have co-

incided with the institutional changes. Table 1 shows that some facilities expanded

their capacity (i.e., the average design flow increased) and/or adopted advanced or

tertiary treatment technology after the institutional changes. Furthermore, Table 1

documents that California became much drier during the period of study, and that

there was an increase in water pollution as measured by dissolved oxygen saturation

levels.18 We find, however, that both compliance rates and penalties increased after

the 2006 institutional changes, even after controlling for various time-varying facility

and local attributes (Table A1 and Figure A1 in Appendix A.1).

3.4. Determinants of Penalty in the Data. Under the enforcement policy, as

described in Section 2.2, the penalties for violations with the same attributes by dif-

ferent facilities may not be the same. California State Water Resources Control Board

(2010b) even recognizes, on page 10, that “the need to assess all of the applicable

factors in liability determinations may yield different outcomes in cases that may

have many similar facts.” There are three main reasons why different penalties may

arise. First, the penalty amount is supposed to reflect the local beneficial use of the

affected water, the violator’s ability to pay, and the economic benefit of the violation,

all of which can differ across facilities. Second, the violator’s conduct is considered

17This increase in the average penalty is mainly driven by an increase in the probability of imposing
penalty upon violation, as opposed to an increase in the amount of penalty conditional on any
penalty actions. The probability of imposing penalty within four years of the occurrence of a MMP
violation is 0.42 for a violation of 2000–2002, and this probability doubles for a violation of 2006–
2011. On the other hand, conditional on any penalty, the average penalties are similar across these
two periods: $3,280 (2000–2002) and $3,211 (2006–2011).
18According to National Integrated Drought Information System, the longest drought in California
since 2000 began in late December 2011 and ended on early March 2019, and the most intense
period of drought occurred in October 2014. For more information on droughts in California, refer
to https://www.drought.gov/drought/states/california.
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Table 2. Determinants of Penalty for Effluent MMP Violations

Penalized Log (Penalty Amount + 1)
(1) (2) (3) (4) (5) (6)

Violation attributes
Priority violation† 0.059 0.030 -0.001 0.506 0.292 0.032

(0.051) (0.040) (0.033) (0.398) (0.314) (0.262)
Group I pollutant 0.066 0.059 0.049 0.489 0.416 0.336

(0.050) (0.038) (0.030) (0.383) (0.302) (0.237)
Group II pollutant 0.040 0.030 -0.012 0.325 0.237 -0.074

(0.074) (0.062) (0.054) (0.585) (0.489) (0.427)

Current violations
Any violations (quarter) 0.061 0.087∗∗ 0.093∗∗∗ 0.599∗∗ 0.779∗∗∗ 0.817∗∗∗

(0.038) (0.037) (0.033) (0.291) (0.284) (0.256)

Past violations

Any violations (semester) -0.013 -0.003 0.047 -0.068 0.012 0.430
(0.063) (0.055) (0.044) (0.501) (0.443) (0.349)

Facility attributes
Major facility 0.195∗∗∗ 0.103 1.402∗∗∗ 0.692

(0.065) (0.065) (0.519) (0.499)
Started in 1982-87 0.222∗∗∗ 0.167∗∗ 1.616∗∗ 1.267∗∗∗

(0.086) (0.068) (0.683) (0.543)
Started in 1988- 0.213 0.029 1.492 0.164

(0.173) (0.114) (1.319) (0.869)
Advanced/tertiary -0.036 -0.038 -0.381 -0.246

(0.072) (0.068) (0.566) (0.531)
Capacity utilization> 87% 0.005 -0.065 -0.064 -0.628

(0.079) (0.058) (0.634) (0.453)
Service population< 10K -0.057 -0.042 -0.545 -0.477

(0.069) (0.078) (0.534) (0.603)
Special district 0.142∗∗ 0.116∗∗ 1.014∗∗ 0.817∗∗

(0.061) (0.046) (0.489) (0.369)
High threat -0.081 -0.002 -0.697 -0.097

(0.077) (0.078) (0.596) (0.618)

(Continued)

in penalty assessment so that per-violation penalty may depend on the concurrent

violations; i.e., penalty can be nonlinear in the number of violations. Third, the

violator’s past compliance history is another factor in penalty assessment.

Table 2 shows the extent to which of these sources matter in practice, if any. First,

we find that some facility and local characteristics further explain the penalty varia-

tion, even after controlling for violation attributes and current and past compliance

behavior. For example, major facilities and facilities located in a county with high

average household income or high approval rate for the 2006 proposition 84 are more

likely to receive a penalty and tend to receive a larger penalty than other facilities.
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Table 2. Determinants of Penalty (Continued)

Penalized Log (Penalty Amount + 1)
(1) (2) (3) (4) (5) (6)

Weather & pollution
Precipitation > 75th pct. -0.130∗∗ -0.126∗∗∗ -0.028 -1.112∗∗∗ -1.080∗∗∗ -0.248

(0.050) (0.042) (0.038) (0.396) (0.330) (0.274)
Precipitation < 25th pct. -0.057 -0.038 -0.005 -0.402 -0.251 -0.0124

(0.048) (0.036) (0.029) (0.379) (0.290) (0.231)
Swimmable 0.013 0.069 0.089 0.572

(0.065) (0.056) (0.523) (0.429)

County attributes
Irrigation water use>67% 0.134∗ 1.119∗

(0.073) (0.583)
Household income >$57K 0.158∗∗ 1.133∗

(0.076) (0.594)
Pop. density > 722/mi2 0.078 0.568

(0.089) (0.726)
Pop. density < 80/mi2 -0.133∗ -0.990

(0.077) (0.603)
Prop. approval >50% 0.118∗ 1.015∗∗

(0.063) (0.505)

Regional water board FE No No Yes No No Yes
Year FE; Quarter FE Yes Yes Yes Yes Yes Yes
Mean dependent variable 0.678 0.678 0.678 5.239 5.239 5.239
Number of observations 15,827 15,827 15,827 15,827 15,827 15,827
Adjusted R2 0.167 0.245 0.400 0.174 0.245 0.406

Notes: This table reports OLS estimates. The unit of observation is a violation; all non-exempt
effluent MMP violations of 2000–2010 by the facilities in our sample are included. Standard
errors are adjusted for clustering at the facility level, and are provided in parentheses; ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.01. † : The water boards may categorize a violation as priority, based on the
violation’s significance and severity (see California State Water Resources Control Board (2002,
2010b) for the criteria for a priority violation).

These patterns are possibly due to such facilities having relatively high marginal com-

pliance costs. Alternatively, the regulator may consider violations by these facilities

to be particularly serious, because, for example, of their larger potential harm to

nearby residents or their potential political repercussions. The structural analysis

developed in the next sections decomposes these distinct explanations.

Second, both the probability and the amount of penalty for a violation increase

when there are other concurrent violations by the same facility. For example, based on

Column (3) in Table 2, the probability of getting penalized within 4 years increases, on

average, by 9.3 percentage points if there are other violations during the quarter when

the given violation occurred. Moreover, the average penalty amount also increases

significantly when there are other concurrent violations (Columns (4)-(6)). In our
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facility-quarter level analysis presented in Section 5, we find that the expected per-

violation penalty increases as the number of violations during a quarter increases.19

Our structural analysis allows us to study the effects of this nonlinearity of the penalty

schedule on compliance.

Third, we do not find that past violations matter for penalty actions. In all specifi-

cations in Table 2, the effects of having any other violation in the six months prior to a

violation on penalty are statistically insignificant, and also much smaller in magnitude

than the counterpart effects of having any concurrent violations. Table A2 in Appen-

dix A.2 shows that these patterns persist even with an enriched set of variables based

on current and past compliance behavior, following Blundell, Gowrisankaran, and

Langer (2020). Granted, neither the Clean Water Act nor the California Water Code

have an institutionalized dynamic deterrence mechanism, in contrast to the Clean Air

Act (Blundell, 2020; Blundell, Gowrisankaran, and Langer, 2020). This motivates us

to assume that the regulator sets a static penalty schedule in the analysis.20

In Appendix A.3, we provide evidence that these three empirical patterns are not

necessarily driven by the violation attributes that are not controlled for. First, when

we consider violations that are identical in terms of the pollutant, the emission stan-

dards, and the actual emission amounts, not only there is a large dispersion in penal-

ties but also the three patterns described here persist. Second, focusing on penalty

actions for which we observe both the initial penalty assessed by the staff and the

final penalty set by the water board, we find that the penalty adjustment by the

board varies with local attributes, in particular water use for irrigation and income.

4. Theoretical model

4.1. Setup. In this section, we present our theoretical model of the interaction be-

tween a regulator and a single facility. Section 5.1 clarifies how we employ this model

to analyze the heterogeneity in enforcement standards across different facilities. Our

19We specify and estimate the penalty schedule as a function of the number of violations and various
facility attributes (see Equation (13) in Section 5). The penalty is allowed to be nonlinear in the
number of violations, and our estimates provide evidence that the penalty is increasing and strictly
convex in the number of violations (Figure 2 in Section 5; Table A5 in Appendix E.1).
20In the California Water Code, the mandatory minimum penalty (MMP) regulations have a partial
feature of dynamic incentives in that, if four or more non-serious violations happen in six consecutive
months, then the facility is subject to an MMP. Reflecting this, we employ six months as a unit
of period instead of three months, and find our results to be robust (see the results for alternative
specification 3 in Tables A12 and A13 in Appendix F.2).
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model is a version of the one developed by Mookherjee and Png (1994), with slight

modifications to fit the empirical setting.21

Consider a wastewater treatment facility that chooses the extent to which it com-

plies to regulations given a penalty schedule.22 We assume that the facility benefits

from avoiding both compliance costs and penalty, following the evidence from Section

3.3 that the facilities reduced the frequency of violations in response to an increase

in penalty. The facility is better informed than the regulator about its compliance

costs. Specifically, each facility is endowed with a type, θ, which is known to the

facility only. The regulator knows that θ is the realization of a random variable Θ

that follows a strictly increasing and continuously differentiable distribution function

F (·) with support (0, θ̄). Let f(·) be the associated density.

The facility sets a negligence level a ∈ [0, a], which is not observed by the regulator

and affects the facility’s compliance status in the following manner: let K be a random

variable representing the number of emission violations incurred by the facility, and

assume that K follows a Poisson distribution with mean a.23 By setting the negligence

level a, the facility derives private benefit θb(a), which reflects the operation cost

savings associated with lower compliance. Thus, denoting the benefit from maximum

negligence or no compliance efforts as θb(a), the total compliance cost by choosing

some negligence level a is θ[b(a) − b(a)]. Because the facilities in our data are often

publicly owned, θb(a) could be different from the actual operational cost savings from

emitting more pollutants to the waters, potentially reflecting the career concerns of

the facility administrators and the scrutiny from the public.

Because the realization θ and the consequent negligence level a are not known by

the regulator, a penalty schedule depends on the realized number of violations only.

Specifically, given k violations, the facility has to pay the penalty according to a

function ε(k). Assuming that the facility is risk-neutral, we can restrict our attention

21Departing from Mookherjee and Png (1994), we assume that the violations are stochastically
determined by the facility’s compliance efforts, which are not observed by the regulator. Also, we
implicitly assume that exogenously determined inspection activities provide incentives for facilities
to truthfully self-report any violation, allowing us to abstract away from monitoring. The latter
feature differentiates our analysis from those by Duflo et al. (2018) and Blundell, Gowrisankaran,
and Langer (2020), which study the regulator’s inspection actions and their associated costs.
22We consider a continuous action for compliance, such as operation and maintenance of the existing
pollution abatement equipment, as opposed to a discrete action, such as a large investment for a
new piece of equipment. This assumption is suitable in our setting, given the discussion on the main
causes of violation in Appendix A.2.
23The stochastic nature of the number of violations, given a negligence level, reflects that violations
may occur due to circumstances outside of a facility’s control, such as unexpected weather conditions
and varying qualities of incoming water to the treatment facility.
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to the expected penalty, conditional on a, which we denote by

e(a) ≡ exp(−a)
∞∑
k=0

ε(k)

k!
ak. (1)

The expected payoff to a facility setting the negligence level a is

−θ [b(a)− b(a)]− e(a). (2)

We define that a negligence schedule, a(·), is implemented by a penalty schedule e(·)
if a(θ) maximizes (2) for all θ ∈ Θ. If a(·) is implemented by e(·), we have that

θb′ [a(θ)] = e′ [a(θ)] , (3)

whenever a(θ) > 0. Given a penalty schedule e(·), the regulator’s expected costs are∫ θ

0

(
h [a(θ)] + ψe [a(θ)] + θ {b(a)− b [a(θ)]}

)
f(θ)dθ, (4)

where ψ > 0 denotes the marginal cost of imposing penalty, and h(·) represents the

regulator’s perceived environmental costs related to the facility emission violations.24

The enforcement costs, given by ψe[a(θ)], comprise the administrative and political

costs associated with taking formal actions against a facility.25,26

Lemma A1 in Appendix B shows that, by appropriately selecting the function

ε(·), the regulator is able to implement any continuous penalty schedule e(·) with a

bounded domain. In the reminder of the paper, we define the regulator’s problem as

choosing e(·), subject to the constraint that the expected penalty for any a must be

24In our model, we assume that the regulator regards all violations by the same facility as identical to
each other. In Appendix F.1, we re-estimate the model, allowing for heterogeneity in the perceived
harm of violations within a facility. Our key empirical findings persist.
25We assume that the marginal enforcement cost (ψ) is exogenous, i.e., not affected by the aggregate
frequency of violations in equilibrium. The literature on crime, conversely, often treats these costs
as endogenously determined by the policy maker’s allocation of resources to law enforcement and
the individuals’ choices on criminal activities (see Fu and Wolpin (2018) and the references therein).
In environmental regulation, non-administrative costs that might be out of the regulator’s control,
such as those associated with the political repercussions of enforcement actions, may explain a large
part of the enforcement costs.
26Money raised from penalties is generally deposited in the Cleanup and Abatement Account, a
fund managed by the state board from which the regional boards may request money for a project.
Alternatively, publicly owned wastewater treatment facilities in small communities may be allowed
to recover part of the amount they pay in penalties for compliance or supplemental environmental
projects. Our analysis does not distinguish between these potential destinations of the penalties,
since all facilities are liable to pay the penalty amount regardless. However, the possibility that some
facilities are able to partially recover the penalties is one of the reasons why, in the empirical model
presented in Section 5, the enforcement cost borne by the regulator may vary by facility attributes,
such as the location of a facility.
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nonnegative and not exceed the facility’s maximum amount of funds, ω:

0 ≤ e(a) ≤ ω, (5)

for any a. The regulator’s problem is to choose negligence and penalty schedules to

minimize (4), subject to the constraints that the penalty schedule satisfies (5) and

that it implements the negligence schedule.27

4.2. Characterization of Optimal Enforcement. We make the following assump-

tions on the facility’s baseline compliance cost function, b(·), and the regulator’s pref-

erence on water quality, h(·).

Assumption 1. b(·) and h(·) are continuously differentiable and strictly increasing.

Under Assumption 1, the Lemma in Mookherjee and Png (1994) shows that a

negligence schedule, a(·), is implemented if and only if a(·) is nondecreasing and

ω ≥ θb(a)−
∫ θ

0

b[a(θ)]dθ. (6)

The requisite expected penalty schedule is

e(a) = θ(a)b(a)−
∫ θ(a)

0

b[a(v)]dv, (7)

where θ(a) denotes the highest type θ selecting an a(θ) ≤ a. Given this, the regulator’s

problem reduces to choosing a(·) to minimize∫ θ

0

(
h[a(θ)] + ψ

[
θb[a(θ)]−

∫ θ

0

b[a(v)]dv

]
+ θ {b(ā)− b[a(θ)]}

)
f(θ)dθ, (8)

subject to a(·) being nondecreasing and (6). For simplicity we assume that (6) is not

binding at the optimum. By using integration by parts, we rewrite (8) as∫ θ

0

(
h[a(θ)]−

[
(1− ψ)θ +

ψ[1− F (θ)]

f(θ)

]
b[a(θ)] + θb(ā)

)
f(θ)dθ.

We then consider point-wise optimization for each θ, and thus either a(θ) = 0 or a(θ)

satisfies the first order condition:

h′[a(θ)]− b′[a(θ)]

(
(1− ψ)θ +

ψ[1− F (θ)]

f(θ)

)
= 0. (9)

Proposition 1 shows that the following assumption, along with Assumption 1, is

sufficient to guarantee that the negligence schedule characterized above, denoted by

27An individual rationality condition is not considered here. At optimum, limθ→0 e(θ) = 0, so the
indirect (maximized) expected payoff for any θ ∈ (0, θ) is nonnegative.
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a∗(·), is optimal and strictly increasing in θ for any θ such that a∗(θ) > 0. See

Appendix B for the proof.

Assumption 2. (i) (1−ψ)θ+ ψ[1−F (θ)]
f(θ)

is positive and strictly increasing in θ. (ii) b(·)
is strictly concave and h(·) is convex (or b(·) is concave and h(·) is strictly convex).

Proposition 1. Under Assumptions 1–2, the optimal negligence schedule, a∗(·), is

continuous and nondecreasing in θ. For θ such that a∗(θ) > 0, a∗(·) is characterized

by (9) and strictly increasing in θ.

4.3. Inefficiency in Enforcement. Define, for any θ ∈ (0, θ̄), the first-best level of

negligence as a∗∗(θ) ≡ max{0, ã∗∗(θ)}, where ã∗∗(θ) equates the marginal compliance

costs and the marginal environmental costs:

h′[ã∗∗(θ)]− θb′[ã∗∗(θ)] = 0. (10)

From (9), the equilibrium negligence level is not equal to this first-best level for two

reasons: costly enforcement and the asymmetry of information between the regulator

and the facility. Below we show that these two sources of inefficiency are deeply

connected in the model; only in the presence of both the equilibrium negligence level

departs from the first-best.

If there are no enforcement costs, that is, ψ = 0, then it is optimal for the regulator

to induce the facility to choose the first-best negligence level, by setting e(a) =

h(a) − h(0) for a ∈ [0, a], with large ω (specifically, h(ā) − h(0) ≤ ω). Intuitively,

this schedule makes the facility fully bear the costs of externalities, which does not

require the regulator’s knowledge of its type θ.

Now suppose that the marginal enforcement cost is positive (ψ > 0), but the

regulator can contract on the facility’s type. That is, the regulator observes the

realization θ of Θ, and is able to set a penalty schedule conditional on this value. We

maintain the assumption that the regulator observes the number of violations, k, but

not the negligence level chosen by the facility, a. Then, for any given θ, it is optimal

for the regulator to achieve the first-best negligence level by employing the following

enforcement schedule:

e(a; θ) =

0 if a ≤ a∗∗(θ)

θb′[a∗∗(θ)] {a− a∗∗(θ)} otherwise.

This schedule is continuous in a ∈ [0, ā], which guarantees its implementation by

some ε(·) by Lemma A1 in Appendix B, and satisfies (5) with large ω (specifically,
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θb′[a∗∗(θ)] {ā− a∗∗(θ)} ≤ ω). It consists of a variant of a Pigouvian tax, which induces

the facility to choose the first-best level of negligence, a∗∗(θ), with zero penalties (and

thus no enforcement costs) in equilibrium.

5. Structural model

5.1. Data generating process. There are many facilities, which we index by i, and

one regulator.28 Periods are indexed by t. Let Θi,t be the cost type for facility i

in period t. For any given facility, the regulator sets the optimal penalty schedule,

as described in Section 4. Because of the potential changes in the primitives, the

solution to the regulator’s problem can also change over time. We denote by ei,t(·)
the penalty schedule for facility i in period t. Given ei,t(·) and a realization of Θi,t, the

facility sets its optimal negligence level. As Θi,t is a random variable, the equilibrium

negligence set by facility i in period t is also a random variable, which we denote by

Ai,t. Let Gi,t(·) be the distribution of negligence levels of facility i in period t.

The model primitives for facility i and period t are: the distribution of facilities’

types, Fi,t(·); the baseline compliance cost function, bi,t(·); the regulator’s perceived

social cost of violations, hi,t(·); and the marginal enforcement cost, ψi,t. The ob-

servables for facility i in period t are: the number of violations, Ki,t; the amount

of penalty; and facility-period characteristics, xi,t. The vector xi,t includes (i) the

facility’s size, age, treatment technology, capacity utilization, and threat to water

as categorized by the water board; (ii) the dissolved oxygen saturation level in the

watershed (as a measure of the existing water pollution level) and the precipitation

amounts; and (iii) the fraction of fresh water use for irrigation, the average household

income, the population density, and the vote share for the 2006 Proposition 84 in the

county where the facility is located (see Table 5 in Section 6.3 or Table A5 in Appen-

dix E.1 for a complete list). Each of these variables may affect all model primitives:

for example, the population density of the facility’s county is related to the size of

population impacted by water pollution from the facility (and thus the social costs of

violations); the nature of the incoming wastewater (which influences the compliance

costs); and the administrative support for enforcement actions (which affects enforce-

ment costs). Regional water board dummies may help account for heterogeneity of

enforcement resources across the boards (see Table A4 in Appendix A.4), as well as

other time-invariant unobserved local attributes.

28We consider a single generic regulator that deals with all facilities, but allow that regulator to
account for each facility’s type distribution and to perceive the social cost of violations and the cost
of enforcement differently for different facilities.
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We assume that facility heterogeneity in model primitives is captured by xi,t; specif-

ically, Fi,t(·) = Ft(·|xi,t), bi,t(·) = bt(·|xi,t), hi,t(·) = ht(·|xi,t), and ψi,t = ψt(xi,t).

Accordingly, the equilibrium penalty schedule and the equilibrium distribution of

negligence levels are also functions of xi,t: ei,t(·) = et(·|xi,t) and Gi,t(·) = Gt(·|xi,t). A

key identifying assumption is that the primitives regarding facilities’ compliance costs

are time-invariant, that is, Ft(·|xi,t) = F (·|xi,t) and bt(·|xi,t) = b(·|xi,t). In particular,

we assume that these primitives are unaffected by the 2006 institutional changes.29

We further assume that Θi,t is independently distributed across facilities and periods,

conditional on xi,t.
30 For ease of notation, we do not explicitly condition the model

primitives on xi,t in the discussion of identification below.

5.2. Identification. For the identification of the model, we follow three steps. First

we recover the distribution of negligence levels set by the facilities in each period,

based on the observed violations. The second step, following the strategy proposed

by d´Haultfoeuille and Février (2020), employs the exogenous change in the penalty

schedule associated with the 2006 institutional changes to partially identify the facility

type distribution and the marginal compliance cost function. This step does not rely

on any assumption about the regulator’s behavior.

The third step, which builds upon the approach by Luo, Perrigne, and Vuong

(2018), explores the restrictions imposed by the first-order conditions of the regulator

to recover the social cost of negligence and the marginal enforcement cost, as well as

to achieve exact identification of the type distribution and the marginal compliance

cost function. By exploiting the exogenous variation in the penalty schedule, we are

able to consider a more flexible form for the regulator’s objective function than would

be possible using their approach alone. In particular, they assume that ht(·) (the

29Our analysis controls for time-varying variables associated with the technology and cost structure
of the facilities, such as the capacity utilization rate and the treatment level, and environmental
factors including precipitation and water pollution. We argue that a systematic change in the
compliance cost function beyond these observed attributes may not have occurred during the period
of our study for two reasons. First, most facilities were operating well before and after 2006: 95
percent of the facilities in our sample started their operation before 1988; and the permit records
show that the newest facility in our dataset started its operation in 2004, and 13 facilities retired
during 2000–2006. Second, based on the Census of Government Finance and Employment, there has
been a steady flow of capital investment for sewerage services by local governments in 1997–2012,
with an average of $1.87 billion (in 2010 dollars) per year in total.
30By this assumption, each facility independently draws its type every period. An alternative as-
sumption is that the facilities’ types are constant over time and the regulator commits not to exploit
the information on the facility type obtained in the previous periods. Our identification argument
holds under either of these two assumptions, which are both consistent with the static penalty
schedules in the data (Table 2 in Section 3.4; and Tables A2 and A3 in Appendix A).
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monopolist’s cost function in their setting) is linear, whereas we can accommodate a

polynomial specification of arbitrary degree.

We restrict our attention to the case in which it is optimal for all facilities to choose

a nonzero rate of violations, or at(θ) > 0, for any period t and θ ∈ (0, θ).31 Then,

given any period t, the distribution of the number of violations by any facility is a

mixture Poisson. Indeed, a facility chosen at random sets a negligence level according

to the distribution Gt(·), and, given the negligence level, the number of violations for

that facility follows a Poisson distribution. The following lemma establishes the iden-

tification of Gt(·) from the observed number of violations across facilities. To prove

this lemma, we exploit the moment generating function of the Poisson distribution,

which was also used in Aryal, Perrigne, and Vuong (2019). See Appendix B for the

proofs of the lemmas and the propositions in this section.

Lemma 1. For every t, Gt(·) is identified.

Having identified the distribution of negligence levels in each period, our strategy

to partially identify b′(·) and F (·) closely follows that proposed by d´Haultfoeuille

and Février (2020). We consider two enforcement regimes, before and after the 2006

institutional changes, and assume that, within each regime, the penalty schedule

does not change. Formally, we make the following assumption on et(·), the expected

penalty in period t, as a function of the negligence level set by the facilities:

Assumption 3. et(·) = epre(·) for all t < 2006. Similarly et(·) = epost(·) for all

t > 2008. Moreover, e′post(a) > e′pre(a) for all a > 0.

We can directly identify the penalty schedule, εt(·) as a function of the number

of violations, in each period. From (1), therefore, we readily identify the functions

epre(·) and epost(·), so Assumption 3 is testable.32 The latter part of the assumption

implies that the enforcement regime becomes stricter after the institutional changes.

We exclude the period of 2006-2008 as a transition period, although such an exclusion

is not necessary and the length of the transition period can be adjusted.

31This assumption is consistent with our data—where 10 percent of the facilities that were active
during all the 60 quarters in 2000–2014 were always in compliance—in the sense that a very small,
but positive value of a can generate no violations for a long period of time. For example, a facility
that sets a = 0.001 will have no violations during 60 periods with probability e−0.001×60 ≈ 0.94.
32Given that we assume that F (·) and b(·) remain the same for the whole sample period, Assumption
3 can be related to the changes in ht(·) and ψt due to the institutional changes. Specifically, a
sufficient condition for this assumption to hold is that h′post ≥ h′pre(·) and ψpost ≤ ψpre, with at least
one inequality being strict. See Appendix B.2 for comparative statics of the model.
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Under Assumption 3, any facility of a given type θ sets at most two different

negligence levels—one for each of the two enforcement regimes. Accordingly, we

denote by Gj(·) the distribution of negligence levels holding in period j ∈ {pre, post},
where, as above, pre refers to t < 2006 and post to t > 2008. Also, we denote

by ã(·, j) the equilibrium negligence function in period j ∈ {pre, post}. From (3),

it is clear that ã(θ, pre) > ã(θ, post) for all θ. Let the supports of the negligence

level distributions before and after the regime change be given by Apre and Apost,
respectively. We assume that Apre ∩ Apost 6= ∅.

The strategy described below, and formalized in Proposition 2, allows us to partially

recover F (·) and b′(·) without making any assumptions about the behavior of the

regulator. Define the function θ̃(a, j) as the inverse of ã(·, j) for any a ∈ Aj. Define

also the following two functions:

TH(a) ≡ G−1
pre [Gpost(a)] , (11)

T V (θ, a) ≡
e′post(a)

e′pre(a)
θ. (12)

The function TH(·) is defined for any a ∈ Apre ∩ Apost, while T V (·, ·) is identified

over the entire domain of a and θ. The following lemma plays a key role in the

identification of F (·) and b′(·):

Lemma 2. Under Assumptions 1–3, we have that TH(a) = ã
[
θ̃ (a, post) , pre

]
for

a ∈ Apre ∩ Apost, and T V
[
θ̃(a, pre), a

]
= θ̃(a, post) for any a ∈ Apre.

This lemma establishes that TH(a) returns the negligence exerted in the pre regime

by a facility type that, while in the post regime, exerted negligence level a; and

T V
[
θ̃(a, pre), a

]
returns the type that exerts negligence level a in the post regime.

To partially identify F (·) and b′(·), we normalize θ̃(a0, post) = θ0 = 1 for some

a0 ∈ Apost.33 We then define recursively:

al = TH(al−1),

and θl = T V (θl−1, al) .

The transform TH(·) connects points in the negligence distribution supports in both

regimes. For any a ∈ Apost, TH(a) ∈ Apre. However, under Assumption 3, we have

33This location normalization is necessary, as only the product of the cost type and the baseline
function enter the facility’s objective function. Thus, multiplying the type by a constant and dividing
the baseline function by the same constant results in an observationally equivalent model structure.
In our empirical application, we set a0 = 1.
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that T V
[
θ̃(a, pre), a

]
> θ̄ for a > max(Apost); i.e., there are relatively high negligence

levels that, in equilibrium, are only set in the pre regime. Let L̄ be largest integer

such that TH(aL̄) ∈ Apost. We are now ready to state the following result.

Proposition 2. Suppose Assumptions 1–3 hold. Then, for any l ∈ {0, 1, . . . , L̄}
and j ∈ {pre, post}, the following objects are identified up to the normalization

θ̃(a0, post) = θ0 = 1 for some a0 ∈ Apost: (i) the equilibrium negligence level, ã(θl, j);

(ii) the distribution of cost types, F (θl); and (iii) the marginal baseline compliance

cost function, b′ [ã(θl, j)].

The proof, which we show in Appendix B, is based on d´Haultfoeuille and Février

(2020). Here, we just outline it. Starting from the normalization θ̃(a0, post) = 1, we

apply the transforms TH(·) and T V (·) in an iterative fashion to recover a sequence

of types {θl}l∈{0,...,L̄}, together with the corresponding negligence levels ã(θl, pre) and

ã(θl, post) set by each θl in equilibrium in the pre- and post-2006 periods, respectively.

For every identified pair θl and ã(θl, j), we use (3), the first order condition of the

facility’s problem, to obtain b′ [ã(θl, j)] =
e′j [ã(θl,j)]

θl
. Finally, because of the one-to-one

mapping between types and equilibrium negligence levels (Proposition 1), we can

recover F (θl) = Gj [ã(θl, j)]. Under the assumptions of Proposition 2, F (·) and b′(·)
are only identified over a finite set of values. The set is finite due to the boundedness

of the type space, and the exact number of values at which the functions are identified

depends on the shape of the functions ã(·, pre) and ã(·, post).
To complete the identification of the model, we must explicitly consider the regu-

lator’s problem. We begin by making the following simplifying assumption:

Assumption 4. (i) ht(·) = hpre(·) and ψt = ψpre for all t < 2006, and ht(·) = hpost(·),

ψt = ψpost for all t > 2008. (ii) For j ∈ {pre, post}, the function hj(a) is a polynomial

function of a finite degree R with hj(0) = 0; i.e., hj(a) =
∑R

r=1 γj,ra
r for any R.

Assumption 4 (i) implies that all model primitives are constant within each of the

two regimes, and 4 (ii) imposes a flexible parametric structure to the external costs

of violations as perceived by the regulator. Below we make a technical assumption on

the equilibrium penalty schedule, which guarantees that we can employ the fist-order

conditions from the regulator’s problem to recover ψj and γj,r, for j ∈ {pre, post} and

r ∈ {1, . . . , R}; then we state our last proposition.

Assumption 5. There is an interval U ∈ R+ such that the functions Ẽ0(a) ≡ e′post(a)

e′pre(a)

and Ẽj,r(a) ≡ ar

e′j(a)
for all r ∈ {1, · · · , R} are strictly monotone in a ∈ U .
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Proposition 3. Suppose Assumptions 1–5 hold. Then, if L̄ ≥ 1, the following

objects are identified up to the normalization θ̃(a0, post) = 1 for some a0 ∈ Apost: (i)

the distribution of facilities’ types, F (·); (ii) the derivative of the baseline compliance

cost function, b′(a) for any a ∈ Apre∪Apost; and (iii) the parameters of the regulator’s

objective function, {γj,r}Rr=1 and ψj, for j ∈ {pre, post}.

In a nutshell, we first identify the parameters of hj(·) and ψj based on (9), the first

order condition of the regulator, evaluated at the vector {θl}L̄l=0 for which ã(θl, pre)

and ã(θl, post) are known from Proposition 2. The main challenge in the process is

that f(θl) is not yet identified. To address the challenge, we exploit the relationship

between a density and its quantile function, a technique that has been employed by

Luo, Perrigne, and Vuong (2018). Equation (9) holds for every θ in the support—not

only those in {θl}L̄l=0. Thus, once hj(·) and ψj are identified, we can use (9) to identify

ã(θ, j) for all θ. Knowing the whole mapping ã(·, j), we employ the same techniques

explained in the discussion of Proposition 2 to recover F (·) and b′(·).

5.3. Estimation. We first use flexible parametric functional forms to estimate the

penalty schedules and the distribution of negligence levels before and after the 2006

institutional changes. Although these objects can be nonparametrically estimated in

principle, our sample size and our intent to condition the estimates on xi,t render such

an approach infeasible. We then closely follow our identification strategy to estimate

the model primitives. We describe the procedure below and in Appendix C.

5.3.1. Estimation of the penalty schedules. We assume that the penalties, denoted by

εi,t, take a Type 2 Tobit form. Recall that ki,t denotes the number of violations by

facility i in period (quarter in our estimation) t, and define

ε∗1i,t = xi,tφ1,x + 1{t>2006}φ1,post + φ1,kki,t + u1i,t, (13)

log ε∗2i,t = log
[
exp (xi,tφ2,x) ki,t + φ2,k2k

2
i,t

]
+ u2i,t,

and εi,t =

ε∗2i,t if ε∗1i,t ≥ 0,

0 otherwise,

where (u1i,t, u2i,t)’s are i.i.d. draws from a bivariate normal distribution with zero

mean, variances 1 and σ2
2, and covariance σ12. We assume that (u1i,t, u2i,t) are inde-

pendent of (ki,t,xi,t), and that these error terms represent features of the facility and

the occurred violations that might affect penalties ex-post.34

34One important dimension that (u1i,t, u2i,t) might capture is violation severity. One could expect
the number and severity of occurred violations to be related in reality, making our assumption
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This econometric specification of the observed penalties closely reflects the institu-

tional features from Section 2. First, not all MMP violations are penalized, and both

the event of nonzero penalty and the penalty amount depend on violations and facility

attributes. Second, the penalty amount can be nonlinear in the number of violations.

Third, to account for the institutional changes in 2006, we allow the probability of a

nonzero penalty to depend on a dummy variable indicating the post-2006 period.35

Denote φ ≡ {φ1,x, φ1,post, φ1,k, φ2,x, φ2,k2 , σ2, σ12}. We estimate φ using the facility-

quarter observations during 2000-2001 and 2009-2010 with at least one MMP viola-

tion, while truncating observations with an extreme number of violations, more than

25 (the 95th percentile conditional on at least one MMP violation).36 Let εpre(k|xi,t;φ)

and εpost(k|xi,t;φ) denote the expected penalties for a facility with characteristics xi,t

and k violations in a quarter before and after the 2006 institutional changes, respec-

tively. Given our Tobit model, these expected penalties can be written as:

εj(k|xi,t;φ) = Pr(ε∗1i,t ≥ 0|k,xi,t, φ)E
[
ε∗2i,t|ε∗1i,t ≥ 0, k,xi,t, φ

]
.

We obtain an estimate φ̂ by MLE, and substitute φ̂ for φ in the above equation. Then,

using (1), we estimate epre(a|xi,t) and epost(a|xi,t), the penalty schedules for a facility

with attributes xi,t, as functions of its negligence level a. To do so, we approximate

the infinite sum in (1) by a finite sum up to a large number as follows:

êj(a|xi,t) = exp(−a)
k=150∑
k=0

εj(k|xi,t; φ̂)

k!
ak. (14)

5.3.2. Estimation of the negligence distribution. We assume that the negligence level

distribution, Gj(·|xi,t) for j ∈ {pre, post}, is a gamma distribution with shape pa-

rameter exp(zi,tδ) and rate parameter exp(zi,tδ − β0,j − β1xi,t), where the vector zi,t

is a subset of xi,t.
37 Consistent with the theoretical model, conditional on the real-

ization of a negligence level a, the distribution of violations is Poisson with mean a.

Define βj ≡ (β0,j, β1), for j ∈ {pre, post}. Then the estimation of the distribution of

of independence between (u1i,t, u2i,t) and (xi,t, ki,t) implausible. In Appendix F.1, we consider an
extension of the model that explicitly incorporates violation severity as an endogenous variable. The
results obtained from the extended model are very similar to those presented in the main text.
35In a more general specification, we allow the 2006 institutional changes to affect both the probabil-
ity and the magnitude of non-zero penalties. We find that the latter effect is statistically insignificant.
This is consistent with the empirical patterns of the penalty changes over time (footnote 17).
36Our findings are robust to reasonable perturbations of the truncation criterion. See the results for
alternative specifications 4 and 5 in Tables A12 and A13, in Appendix F.2.
37We include in zi,t a constant and region-specific dummies. Alternative specification 6 in Tables
A12 and A13, in Appendix F.2 show that the results are robust to including more variables in zi,t.
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negligence levels amounts to estimating the parameter vectors δ, βpre, and βpost. We

estimate these parameters by MLE, using the observed ki,t and xi,t.

5.3.3. Estimation of the model primitives. The remainder of the estimation proce-

dure, which closely follows the identification strategy in Section 5.2, only takes as an

input the penalty schedules and the negligence distributions, before and after 2006.

Thus, having estimated these objects using data from all facility-periods, we estimate

the model primitives separately for any observed attributes xi,t. In our empirical

analysis, we constrain the social costs of negligence as perceived by the regulator to

be linear. That is, we assume that hj(a|xi,t) = γj(xi,t)a for any a and j ∈ {pre, post}.
This constraint facilitates the interpretation of our empirical results, as it keeps the

social costs of negligence for each facility one-dimensional—making the comparison of

costs across different facilities convenient. As discussed in Section 6, it also allows for

a good fit of the model to the data. In sum, the estimated model primitives for any

given xi,t are: the functions F (·|xi,t) and b′ (·|xi,t), characterizing the distribution of

facility compliance costs; and the regulator preferences parameters before and after

the institutional changes, γpre(xi,t), γpost(xi,t), ψpre(xi,t) and ψpost(xi,t).

6. Results

Given that the estimated model primitives are functions of observed attributes

(xi,t), we obtain each ith facility’s primitives based on xi,t in the first quarter of 2005

separately, for all 221 facilities that were active during that quarter, and build our

results. We provide the summary statistics of the results across the facilities and

bootstrap standard errors for the model fit and counterfactual results.

6.1. Model Fit. We find that the estimated model fits the data well. Table 3 com-

pares the distributions of the number of quarterly violations and average quarterly

penalty, as predicted by the estimated model, with the counterpart distributions ob-

served in the data. The estimated model is able to reproduce both the high probability

of no violations at the facility-quarter level and the shift in the distribution of viola-

tions and penalties that took place following the 2006 changes. In addition, Figure

2 shows the fit for the point-wise average (per-violation) penalty for each number of

violations across facilities based on the first-stage estimates. The estimated penalty

schedule exhibits strict convexity: the average per-violation penalty is strictly increas-

ing in the number of violations (Panel (B)). This is consistent with our violation-level

descriptive findings (Table 2 in Section 3.4; Table A3 in Appendix A.3).
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Table 3. Model Fit

Before After
Data Model Data Model

Number of violations

0 0.771 0.789 0.843 0.805
[0.744, 0.800] [0.793, 0.816]

1 0.073 0.063 0.045 0.062
[0.061, 0.068] [0.060, 0.067]

2 0.038 0.031 0.027 0.030
[0.030, 0.033] [0.029, 0.032]

3 0.029 0.020 0.019 0.019
[0.019, 0.021] [0.018, 0.020]

4 0.017 0.014 0.013 0.013
[0.013, 0.015] [0.012, 0.014]

5 and more 0.072 0.082 0.053 0.071
[0.075, 0.091] [0.063, 0.077]

Penalties

Average penalty (in $) 2,381 2,318 2,215 2,119
[1833, 3158] [1812, 2704]

Notes: This table provides the estimated distributions of the number of violations and penalty
amounts across all facilities, as observed in the data and predicted by the fitted model. For
the distribution of the number of violations, the data consist of facility-quarter observations
in the periods 2002-2005 and 2011-2014. For the penalty statistics, we use facility-quarter
observations in the periods of 2000-2001 and 2009-2010. Bootstrap 95% confidence intervals
for the fitted values are between brackets.

In Appendix E.2, we show that the estimated model satisfies the assumptions in

Sections 4 and 5. Recall that Assumptions 1 and 2 are sufficient for the equilibrium

characterization; and Assumptions 3–5 are for the identification of the model.

6.2. Estimated Model Primitives. Table 4 presents the summary statistics of our

estimates of the primitives of the model: the facilities’ marginal compliance costs

and regulator preferences (γ and ψ) for the periods before and after the 2006 institu-

tional changes.38 Noting that our model primitives include the marginal compliance

cost function and the cost type distribution, we report the median marginal compli-

ance costs evaluated at the facility’s median value of θ and the median value of the

negligence level before the 2006 institutional changes, averaged across all facilities.39

38Table A5 in Appendix E.1 provides the penalty schedule estimates, φ’s, and the negligence distri-
bution parameter estimates, δ and β’s, described in Sections 5.3.1–5.3.2. Table A6 in Appendix E.3
provides summary statistics of the regulator preference estimates for each regional board.
39We calculate the marginal compliance cost of a given facility with covariates x, θb̂′(a|x), evaluated

at θ = F̂−1(0.5|x) and a = 1
n

∑
i â
∗
pre[F̂

−1(0.5|x),x] = 0.01, for the summary statistics in Table 4.
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Figure 2. Model Fit: Penalty as a Function of Violations
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(b) Per-violation Penalty Function

Notes: Panel (A) shows the average penalties conditional on each number of violations during a
quarterly period in the data and as predicted by the first-stage estimates, respectively, before the
2006 institutional changes. The 95% confidence intervals for the average penalties in the data are
indicated by the error bars. Panel (B) presents the average amount of per-violation penalties.

Our estimates in Table 4 imply that the increase in enforcement stringency after the

2006 institutional changes, as documented in Table 1 and Figure 1, is rationalized by a

decrease of the marginal enforcement costs (ψ) . The median value of the enforcement

cost per extra dollar of penalty is 86 cents prior to the 2006 changes, and then falls by

66 cents. This decrease is both economically and statistically significant; however, the

changes in the marginal external cost of violation as perceived by the regulator (γ)

are statistically insignificant. These findings seem to be consistent with the nature of

the institutional changes that aimed to reduce the administrative burden of imposing

penalties borne by each regulator in the regional water boards, by providing the

computerized information system and the support from the Office of Enforcement.

6.3. Regulator vs. Local Resident Preferences. We find suggestive evidence

that the estimated regulator preferences on compliance at least partially represent

those of the population at the facility location. Columns (2) and (3) of Table 5

provide the results of regressing the logarithm of the regulator preference parame-

ter estimates for the periods prior to the 2006 institutional changes, γpre(xi,t), and

ψpre(xi,t), respectively, on all facility and local attributes used in the estimation.40

40The regression results on the estimated regulator preferences for the periods after the 2006 changes
are presented in Table A7 in Appendix E.4, and are qualitatively similar to those presented here.
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Table 4. Model Primitive Estimates: Summary Statistics

Median Interquartile
Range

Facility Primitives

Marginal compliance cost 1,431.0 1,084.4
[1072.1, 1714.8] [844.8, 1619.1]

Regulator Primitives

Marginal external/social cost of violation (γ)
Before the 2006 changes 3,589.4 1,603.1

[2892.7, 4547.9] [1002.8, 2812.8]
After the 2006 changes 3,157.1 912.8

[2771.9, 3998.6] [765.1, 1742.2]
Difference before & after the 2006 changes -114.5 1,013.8

[-632.5, 103.9] [317.9, 1767.6]

Marginal enforcement cost (ψ)
Before the 2006 changes 0.865 0.482

[0.361, 0.999] [0.000, 0.701]
After the 2006 changes 0.204 0.219

[0.085, 0.491] [0.114, 0.353]
Difference before & after the 2006 changes -0.551 0.328

[-0.745, -0.239] [0.166, 0.542]

Notes: This table provides the summary statistics of the marginal compliance cost (see foot-
note 39) and the regulator preference parameters (γ, ψ), before and after the 2006 institutional
changes. Bootstrap 95% confidence intervals are between brackets.

First, the regulator’s perceived external cost of violation, γpre(xi,t), is 47 percent

higher for a facility located in a county with a high average household income (over

$57K in 2010) than a facility located in a poorer county (Column (2) of Table 5);

and the enforcement costs per extra dollar of penalty, ψpre(xi,t), are 29 percent lower

(Column (3) of the same table). Given that environmental goods or amenities are

in general considered a normal good, we view this finding as a supporting piece of

evidence that regulators reflect local preferences on water quality in their enforcement

decisions. Second, we also find that the marginal enforcement costs are 13 percent

lower in counties where the majority of the voters supported the 2006 Proposition 84.

These findings may be driven by the state government’s political considerations,

which might partially determine the allocation of enforcement resources, and the

regional board members’ ability and willingness to tailor the enforcement standards

to local preferences and needs. Because regional board members are paid by the hour

at a relatively low rate while their job requires significant expertise, we speculate that

they are likely to serve the boards out of civic duty or personal political aspirations,

which may help align their actions with the local constituents’ preferences.
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Table 5. Explaining Compliance Costs and Regulators’ Preferences

Dependent variables: Facility Regulator: Before the 2006 Changes

log(Compliance Cost) log γ logψ
(1) (2) (3)

Facility attributes

Major facility 0.452∗∗∗(0.100)[0.421] 0.149∗∗∗(0.038)[0.136] -0.110(0.068)[0.124]

Started in 1982-7 -0.309∗∗∗(0.108)[0.361] 0.025(0.032)[0.098] 0.031(0.065)[0.107]

Started in 1988- -2.65∗∗∗(0.486)[0.529] -0.099∗(0.051)[0.097] -0.311∗(0.168)[0.120]

Advanced/tertiary 0.057(0.089)[0.313] -0.076∗∗∗(0.029)[0.099] -0.135∗∗(0.055)[0.081]

Utilization> 87% 0.110(0.089)[0.462] -0.055∗(0.029)[0.103] 0.097(0.055)[0.081]

Service pop.< 10K 0.125(0.094)[0.307] 0.048(0.042)[0.104] -0.109∗ (0.056)[0.123]

Special district -0.404∗∗∗(0.074)[0.832] -0.292∗∗∗(0.026)[0.192] 0.030(0.046)[0.345]

High threat 0.208∗∗(0.088)[0.403] -0.001(0.035)[0.083] -0.189∗∗∗(0.054)[0.112]

Weather & pollution

Precip.> 75th pct. -0.223(0.177)[0.564] -0.069∗∗(0.034)[0.132] 0.048(0.056)[0.149]

Precip.< 25th pct. 0.440∗∗(0.192)[0.264] 0.072(0.094)[0.108] 0.003(0.170)[0.142]

Swimmable -0.127∗(0.066)[0.568] -0.249∗∗∗(0.055)[0.092] -0.159∗ (0.087)[0.191]

County attributes

Irrigation> 67% -0.274∗∗(0.132)[4.649] -0.004(0.036)[0.288] 0.012(0.079)[0.342]

Income> $57K 0.776∗∗∗(0.118)[0.576] 0.469∗∗∗(0.043)[0.194] -0.291∗∗∗(0.077)[0.223]

Density> 722/mi2 -0.631∗∗∗(0.182)[0.951] -0.267∗∗∗(0.037)[0.182] 0.039(0.080)[0.212]

Density< 80/mi2 0.172∗(0.099)[0.482] 0.083∗(0.043)[0.169] 0.019(0.080)[0.224]

Proposition> 50% 0.183 (0.127)[0.302] -0.009(0.037)[0.145] -0.134∗(0.078)[0.150]

Regional water board FE†
San Francisco Bay -0.408∗(0.216)[0.969] 0.033(0.061)[0.271] -0.037(0.148)[0.327]

Central Coast -0.539∗∗∗(0.191)[1.240] 0.040(0.036)[0.270] -0.462∗∗∗(0.122)[0.247]

Los Angeles -2.27∗∗∗(0.191)[1.765] 0.053(0.105)[0.311] 0.055(0.150)[0.359]

Central Valley -0.015(0.252)[1.236] 0.659∗∗∗(0.058)[0.261] -0.378∗∗∗(0.075)[0.227]

Colorado River 0.276(0.317)[1.391] 0.843∗∗∗(0.098)[0.305] -0.719∗∗∗(0.160)[0.358]

Santa Ana 0.154(0.132)[1.751] 0.347∗∗∗(0.073)[0.384] -0.125(0.140)[0.470]

San Diego -5.54∗∗∗(0.848)[7.349] -0.050(0.105)[0.431] -0.985∗∗∗(0.302)[0.674]

Constant 7.38∗∗∗ (0.434)[1.657] 7.88∗∗∗(0.121)[0.402] 0.454∗∗∗(0.160)[0.350]
Adjusted R2 0.826 0.829 0.508

Notes: This table reports the OLS regression results of the logarithm of the estimated marginal
compliance cost and the logarithm of the estimated regulator preferences for each of the 221
facilities active in the first quarter of 2005 on all facility attributes used in the estimation. Robust
standard errors under the assumption that the estimated parameters are measured without error
are in parenthesis, and the bootstrap standard errors without such an assumption are in brackets.
Asterisk marks are based on the former standard errors; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. †
We omit Region 1 (North Coast) in the regressions.
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Figure 3. Disparities in Penalties and Regulator Preferences
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Notes: Panel (A) shows the scatter plot of the estimated marginal benefit of compliance for each
facility at the average negligence level before the 2006 institutional changes (a = 1.08) and the
expected penalty at the same negligence level. Panel (B) shows the scatter plot of the estimated
marginal benefit and cost of compliance for each facility. In Panel (B), we indicate whether the
expected penalty at a is below or above the median, $1,945.5.

6.4. Regulator Preferences and Penalty Disparities. Panel (A) of Figure 3

provides the scatter plot of (i) the expected penalties for each facility, evaluated

at the average negligence level before the 2006 changes (a = 1.08); and (ii) the

marginal benefit of compliance, as perceived by regulators for each facility, at the

same negligence level, which we define as:

γpre(xi,t) + ψpre(xi,t)e
′(a|xi,t).

We find that there is a positive correlation between (i) and (ii), but the variation in

the expected penalties across facilities is not fully explained by the variation in the

regulator preferences. This is partially because there are facilities with high (low)

marginal compliance costs and low (high) marginal benefits of compliance, as can be

seen in Panel (B) of Figure 3. We show in Corollary A2 in Appendix B.2 that it is

optimal for the regulator to set a higher penalty for facilities with higher marginal

compliance costs and/or higher marginal benefits of compliance. Therefore, a facility

with a low (high) benefit of compliance, as perceived by the regulator, may still face

a stringent (lenient) penalty if its marginal compliance costs are high (low).

To quantitatively assess the extent to which the heterogeneity in regulator prefer-

ences explains the disparities in penalties associated with facility and local attributes,
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as documented in Section 3, we consider a counterfactual scenario where all facilities

are subject to the regulator with the median values of γ and ψ (whom we refer to

as the median regulator). Row (1) of Table 6 presents the counterfactual outcomes

under the median regulator scenario compared to the baseline.41 Considering the

expected penalties for each facility at the average negligence level before the 2006

institutional changes (a = 1.08), we find that the standard deviation in the expected

penalties across the facilities would, relative to the baseline scenario, decrease under

the median regulator by a relatively small extent, 11 percent—and this decrease is not

statistically significant.42 In addition, Figure A3 in Appendix E.5 provides evidence

that this pattern is not limited to the penalties associated with a particular negli-

gence level. These results suggest that the heterogeneity in the regulator preferences

across facilities is not the main driver of the observed disparities in penalties, despite

a large degree of heterogeneity in these preferences, as presented in Tables 4 and 5.43

Instead, variation in the distribution of compliance costs across the facilities seems

to be responsible for the bulk of penalty disparities.

6.5. Limiting Regulatory Discretion. In our estimated model, we assume that

the regulator knows the distribution of compliance costs faced by each facility. More-

over, we let her set the optimal enforcement schedule, as characterized in Proposition

1, individually for each facility. That is, our model assumes that the regulator pos-

sesses expertise on the distribution of facilities’ compliance costs, and is able to fully

employ this expertise in the determination of the enforcement schedules. We now con-

duct counterfactual policy experiments in which we limit the regulator’s discretion

to use her expertise. We evaluate the extent to which reducing regulatory discretion

affects the equilibrium compliance behavior by the facilities, the penalties, and the

enforcement costs borne by the regulator. With this goal, we consider two counterfac-

tual scenarios. In the first one, the regulator must determine the same enforcement

schedule to all facilities. This case is closely related to policies aimed at reducing the

autonomy of the regional water boards, as discussed in Section 2.3. In the second

41See Table A8 in Appendix E.4 for the corresponding results based on the estimated regulator
preferences for the periods after the 2006 changes.
42The 95% confidence interval of the change in the standard deviation of penalty stringency includes
positive values. To see why this may happen in our model, consider a facility that faces a relatively
low penalty, but has high benefits of compliance. The median regulator would impose an even lower
penalty for the same violation, intensifying the extent of the penalty dispersion.
43To separately assess the role of heterogeneity in the external cost of violations (γ) versus hetero-
geneity in enforcement costs (ψ), we consider two alternative hypothetical regulators in Appendix
E.7, and report the results in Rows (1) and (2) of Table A11.
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Table 6. Counterfactual Analyses: The Effects of Regulatory Discretion

Violation Frequency Penalty
Mean SD Mean Disparity

(1) Median regulator 0.055 0.278 -0.119 -0.109
[-0.080, 0.174] [0.029, 0.559] [-0.169, 0.010] [-0.518, 0.094]

(2) Uniform penalty -0.061 -0.189 0.013 -1.000
[-0.130, -0.018] [-0.304, -0.097] [-0.015, 0.115] -

(3) Linear penalty -0.059 -0.050 0.158 0.222
[-0.085, -0.020] [-0.082, 0.015] [0.100, 0.358] [-0.032, 0.837]

(4) No enforcement costs -0.230 -0.335 0.485 0.271
[-0.330, -0.169] [-0.379, -0.144] [0.224, 0.718] [-0.168, 1.189]

(5) Green regulator -0.511 -0.408 0.766 -0.807
[-0.779, -0.494] [-0.693, -0.371] [0.172, 1.025] [-0.923, -0.057]

Notes: This table presents the results of five counterfactual scenarios. For each scenario, we
report the proportional changes, relative to the baseline scenario, in the following four statistics:
the mean and the standard deviation of the equilibrium violation frequency across facilities;
the mean of the equilibrium expected penalties; and the standard deviation of the equilibrium
penalties at an identical negligence level (a = 1.08) across facilities, as a measure of disparities in
equilibrium penalty stringency. In Row (1), every facility is under a regulator with preferences
set at the median across all facilities active in the first quarter of 2005. In Row (2), each facility
is subject to the same penalty schedule. In Row (3), regulators are constrained to impose a
penalty schedule linear in the number of violations. In Row (4), regulators do not bear any
enforcement costs. The scenario in Row (5) is similar to that of Row (1), except that, from the
perspective of the common regulator, damages from violation are high and enforcement costs
are low (see the text for details). The table reports the results based on the estimates for the
period prior to the 2006 institutional changes. See also Table A10 in Appendix E.6 for the total
expected costs borne by the regulator in each scenario.

case, the regulator can still vary the enforcement schedules across the facilities, but

these schedules are constrained to be linear in the number of violations. In comparing

the scenarios, our main variables of interest are the equilibrium negligence levels and

penalties. In Appendix E.6, we also provide, for each case, the total expected costs

borne by the regulator, as defined in (4).

6.5.1. One-size-fits-all Policy. Suppose the regulator sets a one-size-fits-all penalty

schedule to minimize the sum of the total expected costs, as defined by (4), across all

facilities. We refer to such a scenario as the uniform policy.44 Relative to the penal-

ties in the baseline scenario, the uniform policy would be harsher to some facilities

and more lenient to others. Hence, in transitioning from the baseline to the uniform

44In considering a uniform policy, we restrict our attention to penalty schedules that are third-
degree polynomials in the number of violations when there is any violation (and zero penalty for full
compliance). See Appendix D.1 for how we implement this counterfactual analysis.
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scenarios, some facilities would violate more, and others less—so the aggregate im-

pact of the uniform policy on violations would depend on the relative importance

of these two effects. Row (2) of Table 6 shows that, under the uniform policy, the

average violation frequency across the facilities would fall by six percent. Despite this

reduction, the total amount of penalties assigned would increase by one percent.

To evaluate in a more transparent manner how the constraint to an uniform policy

affects enforcement costs, we consider penalty schedules that (i) are tailored to facil-

ity and local attributes, and (ii) would achieve the same reduction of six percent in

the average violation frequency across the facilities. In Appendix D.1, we provide the

details of one such schedule that would lower the total penalties by 2.5 percent, rela-

tive to the uniform policy.45 This result illustrates that not being able to individually

consider the attributes of each facility increases the total amount of penalties—and,

accordingly, raises the enforcement costs—without improving compliance. From this

perspective, our findings are consistent with the ones by Duflo et al. (2018), who find

evidence favorable to providing regulators with discretion in targeting inspections.

Another disadvantage of adopting the one-size-fits-all policy is that it limits the

extent to which the preferences of local residents are represented in law enforcement.

To see this, we regress whether a facility increases its negligence level in the transition

from the baseline to the uniform policy on all control variables employed in the

estimation of the structural model. Table 7 shows the regression results.46 We find

that switching to the uniform policy would lead to more violations by facilities that

are major, pose a high threat to water quality, or are located in a county with a high

average household income or a high approval rate for the 2006 proposition for water

projects. These facilities tend to be perceived as having high benefits of compliance

by the regulator (Table 5) and, arguably, also by the local residents.

6.5.2. Linear vs. Nonlinear Penalties. According to our estimates, the enforcement

schedule assigned to each facility is a strictly convex function of the negligence level

(Figure 2). We now consider the scenario in which this schedule must be linear.

Specifically, suppose that, for a facility with attributes vector x, the regulator is

constrained to set the penalty schedule e(a|x) = p(x)a.47 Row (3) of Table 6 shows

45This particular set of penalty schedules is not very sophisticated, suggesting that a regulator with
full discretion might be able to reduce total penalties even more, given a target violation rate. Row
(3) of Table A11 in Appendix E.7 shows the other equilibrium objects under these schedules.
46See Table A9 in Appendix E.4 for the counterpart results based on the post-2006 estimates.
47This linear penalty schedule (as a function of negligence level) can be implemented by ε(k|x) =
p(x)k; with this, for a facility with negligence a and attributes x, the expected penalty is p(x)a. See
also Appendix D.2 for the details on the implementation of this counterfactual analysis.
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Table 7. Heterogenous Effects of Regulatory Discretion

Dependent Variable: Any increase in the negligence level
due to a change to the one-size-fits-all policy?

Facility attributes County attributes

Major 0.404∗∗∗ (0.061) [0.098] Irrigation use -0.042 (0.066) [0.244]

Started in 1982-87 -0.118∗∗ (0.054) [0.055] High income 0.317∗∗∗ (0.059) [0.141]

Started after 1987 -0.214∗ (0.109) [0.079] High density -0.082 (0.053) [0.097]

Advanced/tertiary 0.153∗∗∗ (0.046) [0.072] Low density 0.390∗∗∗ (0.070) [0.130]

Cap. util.> 87% 0.148∗∗∗ (0.046) [0.067] High approval 0.456∗∗∗ (0.071) [0.172]

Service pop.< 10K -0.007 (0.063) [0.093] Regional board FE†
Special district -0.027 (0.039) [0.271] San Francisco 0.556∗∗∗ (0.121) [0.186]

High threat to water 0.077∗(0.042) [0.077] Central Coast 0.296∗∗∗ (0.110) [0.229]

Weather & pollution Los Angeles -0.514∗∗∗ (0.121) [0.192]

Precip.> 75th pct. 0.040 (0.052) [0.108] Central Valley 0.385∗∗∗ (0.085) [0.138]

Precip.< 25th pct. -0.092 (0.116) [0.0701] Colorado River 0.642∗∗∗ (0.131) [0.283]

Swimmable 0.033 (0.053) [0.070] Santa Ana 0.611∗∗∗ (0.124) [0.310]

Constant -0.607∗∗∗ (0.169) [0.229] San Diego 0.244 (0.180) [0.399]

Adjusted R2 0.729

Notes: This table reports the OLS regression results where the dependent variable indicates if
the facility would increase its violation frequency under the uniform penalty scenario, compared
to the baseline, prior to the 2006 institutional changes. The unit of observation is each of the
221 facilities active in the first quarter of 2005. Robust standard errors under the assumption
that the estimated parameters are measured without error are in parenthesis, and the bootstrap
standard errors without such an assumption are in brackets. Asterisk marks are based on the
former standard errors; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. † We omit Region 1 (North Coast).

how the outcomes under linear penalties would compare to those in the baseline

scenario. The convex penalties in the latter scenario allow the regulator to impose,

to a given facility, large penalties per violation if the facility commits many violations

(likely due to its draw of a high cost type, θ), while keeping the penalties relatively

low in case the facility has a small number of violations (probably associated with

a low θ). That is, holding x constant, convex penalties imply larger penalties per

violation to facilities with relatively high compliance costs. If forced to assign linear

penalties, the regulator would decrease (increase) the per-violation penalties for high

(low) θ draws. Our findings indicate that the resulting decrease in violations by low

θ facilities would more than compensate the increase by high θ ones, leading the

expected violations to fall by roughly six percent, overall. The equilibrium penalties

would increase, on average, by 16 percent, raising enforcement costs.

The relatively mild reduction in violation frequencies under linear penalties con-

trasts with the large increases in penalty stringency—suggesting that, from the point
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of view of a regulator facing enforcement costs, linear penalties would be substan-

tially less efficient than non-linear ones. One way of assessing the magnitude of the

excessive enforcement costs associated with linear penalties is through the following

exercise: for every facility, we compute the linear penalty that would lead to the

same expected number of violations as in the baseline scenario. Averaging across the

facilities in the pre-2006 period, we find that penalties would increase by 10 percent.48

These results stress the role played by non-linear penalties in reducing the regulator’s

enforcement costs. They are related to the findings by Blundell, Gowrisankaran, and

Langer (2020), who, in the context of air quality regulation, argue that allowing the

regulator to use relatively sophisticated dynamic penalty schemes leads to reductions

in average fines.

6.6. Discussion. For each facility, we calculate the equilibrium negligence levels and

penalties under two counterfactual scenarios in which, one at a time, we remove two

key sources of inefficiencies in our model. We separately consider the cases with:

costless enforcement (ψ = 0); and no asymmetric information between the regulator

and the facility. As discussed in Section 4.3, either of these scenarios would lead to

the first-best negligence levels, defined in (10). Since equilibrium penalties would be

zero without asymmetric information, we only report the results of the scenario with

no enforcement costs, in Row (4) of Table 6.

Mookherjee and Png (1994) show that optimal penalties for relatively mild offenses

should, at the margin, be smaller than the corresponding social harm or external

costs, while, for sufficiently serious offenses, this relationship should revert. Row

(4) of Table 6 shows that, on average, the first effect prevails; the first-best average

violation frequency is 23 percent lower than the baseline equilibrium. To induce such

compliance levels, average penalties would increase by 49 percent.49 In addition,

Figure A5 in Appendix E.7 shows how the aforementioned gap between the marginal

penalties and the marginal social harm widens as enforcement becomes more costly.50

In the presence of costly enforcement and information frictions, should regulators

have discretion? Insofar as regulator preferences reflect the preferences of local res-

idents (Section 6.3) and that the spillovers of water pollution to nearby areas are

48See Row (4) of Table A11 in Appendix E.7 for the other equilibrium outcomes under this scenario.
Appendix D.2 discusses how this analysis is conducted in detail.
49Table A10 in Appendix E.6 shows that the compliance costs would be higher by 35 percent, the
external costs would be lower by 25 percent, and the enforcement costs would be higher by 55 percent
when the first-best negligence levels are induced, relative to the baseline scenario.
50In Appendix E.7, we consider a regulator whose marginal enforcement costs (ψ) are doubled for
each facility. Row (5) of Table A11 provides the equilibrium outcomes under this scenario.
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limited (to a distance of 20-25 miles; see Keiser and Shapiro (2019)), policies that

restrict regulatory discretion are sub-optimal because the regulator cannot fully uti-

lize her expertise on facilities’ compliance costs to efficiently allocate enforcement

resources. Furthermore, the extent to which law enforcement represents the prefer-

ences of local residents gets limited. However, the regulator preferences might also

reflect her private interests, possibly due to corruption or lack of dedication. These

interests could lead the regulator to have inappropriately low perceptions of the ben-

efits of compliance. Although our analysis cannot identify whether the heterogeneity

in the estimated regulator preferences reflects differences in private or social concerns,

we compute a reasonable upper bound for the excess expected number of violations

associated with private interests, if any.51

With this intent, we consider a counterfactual scenario where, as in the baseline

case, a regulator sets a different penalty schedule to each facility. But, instead of using

our estimated regulator preferences, we consider a green regulator, who highly ap-

preciates the benefits of compliance for all facilities. Specifically, the green regulator

has γ = max{γ̂pre(xi,t)} = 8, 020 and ψ = 0.015, which is the observed average staff

costs per one dollar of penalty.52 The difference in violations frequencies between the

baseline and the green regulator scenarios would be equal to the number of violations

due to private interests, under the assumption that these interests are responsible for

the entirety of the differences between the estimated regulator preferences and those

of the green regulator. The comparison of these frequencies thus provides an upper

bound for the share of violations associated with private concerns in the baseline

scenario. Row (5) of Table 6 shows that this upper bound is equivalent to 51 percent

of the violations. These numbers are based on extreme assumptions about the green

regulator preferences, and should thus be interpreted cautiously.

51Alternatively, we could obtain the social costs of a violation by combining estimates of (i) the social
cost of water pollution and (ii) the effects of a wastewater treatment facility’s violation on water
pollution in a nearby area. To measure (i), we could employ existing estimates on the willingness-
to-pay for water quality, but these estimates are likely to be exceeded by the social cost of water
pollution, due to issues like non-use or existence values and the possibility that individuals may
not be fully informed about the (health-related and otherwise) implications of local water quality
changes (Keiser and Shapiro, 2019). Estimating (ii) would require data on various sources of water
pollution other than the violations by wastewater treatment facilities.
52We observe staff costs for 28 percent of the penalty actions during the period of study in the data.
The average ratio of staff costs to penalty amounts among these actions is 0.015.
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7. Conclusion

We provide an empirical framework to evaluate regulatory discretion by identi-

fying and estimating a model of strategic interactions between a regulator and a

privately-informed discharger. Applying our framework to data on the regulation of

wastewater treatment facilities in California, we estimate the environmental prefer-

ences and enforcement costs of regulators and the distribution of facilities’ compliance

costs. The estimates provide empirical support for regulatory discretion in our set-

ting by showing that (i) regulator preferences reflect environmental preferences of

local constituents; (ii) the heterogeneity of regulator preferences is not the main dri-

ver of observed disparities in penalties; and (iii) limiting regulatory discretion, by

mandating a one-size-fits-all policy or a linear penalty schedule, would increase en-

forcement costs overall and increase violations by facilities with high marginal benefits

of compliance as perceived by the regulator.

References

Abito, Jose Miguel. 2020. “Measuring the Welfare Gains from Optimal Incentive

Regulation.” Review of Economic Studies 87 (5):2019–2048.

Agarwal, Sumit, David Lucca, Amit Seru, and Francesco Trebbi. 2014. “Inconsistent

Regulators: Evidence from Banking.” Quarterly Journal of Economics 129 (2):889–

938.

Aryal, Gaurab, Isabelle Perrigne, and Quang Vuong. 2019. “Econometrics of Insur-

ance Models with Multidimensional Types.” SSRN Working Paper .

Becker, Gary. 1968. “Crime and Punishment: An Economic Approach.” Journal of

Political Economy 76 (2):169–217.

Blundell, Wesley. 2020. “When Threats Become Credible: A Natural Experiment of

Environmental Enforcement from Florida.” Journal of Environmental Economics

and Management 101.

Blundell, Wesley, Gautam Gowrisankaran, and Ashley Langer. 2020. “Escalation of

Scrutiny: The Gains from Dynamic Enforcement of Environmental Regulations.”

American Economic Review 110 (8):2558–2585.

Brocas, Isabelle, Kitty Chan, and Isabelle Perrigne. 2006. “Regulation under Asym-

metric Information in Water Utilities.” American Economic Review 96 (2):62–66.

Burgess, Robin, Benjamin A. Olken, and Stephanie Sieber. 2012. “The Political Econ-

omy of Deforestation in the Tropics.” Quarterly Journal of Economics 127 (4):1707–

1754.



REGULATOR PREFERENCES AND EXPERTISE 43

California Legislative Analyst’s Office. 2004. “An Initial Assessment of the California

Performance Review.” Tech. rep., California Legislative Analyst’s Office. Available

at https://lao.ca.gov/2004/cpr/082704 cpr review ov.htm (last accessed in August

2019).

California State Water Resources Control Board. 2002. “Water Quality Enforcement

Policy.” Tech. rep. Obtained directly from California State Water Resources Con-

trol Board upon our request.

———. 2008. “Water Boards’ Small Community Wastewater Strategy.” Tech. rep.,

Office of Enforcement,. Available at http://www.water.ca.gov/waterplan/docs/

cwpu2013/Final/vol4/water quality/10Small Communities Wastewater Strategy.

pdf (last accessed in August 2019).

———. 2010a. “Deconstructing Enforcement: A Primer on Water Qual-

ity Enforcement.” Tech. rep., Office of Enforcement,. Available at

https://www.waterboards.ca.gov/water issues/programs/enforcement/docs/

deconstructing enforce2010aug.pdf (last accessed in August 2019).

———. 2010b. “Water Quality Enforcement Policy.” Tech. rep. Available

at https://www.waterboards.ca.gov/water issues/programs/enforcement/docs/

enf policy final111709.pdf (last accessed in August 2019).

Cameron, A Colin and Pravin K Trivedi. 2013. Regression Analysis of Count Data.

Cambridge University Press.

Cropper, Maureen L., William N. Evans, Stephen J. Berardi, Maria M. Ducla-Soares,

and Paul R. Portney. 1992. “The Determinants of Pesticide Regulation: A Statisti-

cal Analysis of EPA Decision Making.” Journal of Political Economy 100 (1):175–

197.

Deily, Mary E and Wayne B Gray. 1991. “Enforcement of Pollution Regulations

in a Declining Industry.” Journal of Environmental Economics and Management

21 (3):260–274.

d´Haultfoeuille, Xavier and Philippe Février. 2020. “The Provision of Wage Incen-

tives: A Structural Estimation Using Contracts Variation.” Quantitative Econom-

ics 11 (1):349–397.

Duflo, Esther, Michael Greenstone, Rohini Pande, and Nicholas Ryan. 2018. “The

Value of Regulatory Discretion: Estimates from Environmental Inspections in In-

dia.” Econometrica 86 (6):2123–2160.

Earnhart, Dietrich. 2004a. “Panel data Analysis of Regulatory Factors Shaping En-

vironmental Performance.” Review of Economics and Statistics 86 (1):391–401.



44 KARAM KANG AND BERNARDO S. SILVEIRA

———. 2004b. “Regulatory Factors Shaping Environmental Performance at Publicly-

owned Treatment Plants.” Journal of Environmental Economics and Management

48 (1):655–681.

Fowlie, Meredith, Mar Reguant, and Stephen P Ryan. 2016. “Market-based Emissions

Regulation and Industry Dynamics.” Journal of Political Economy 124 (1):249–

302.

Fu, Chao and Kenneth I. Wolpin. 2018. “Structural Estimation of a Becker-Ehrlich

Equilibrium Model of Crime: Allocating Police Across Cities to Reduce Crime.”

Review of Economic Studies 85 (4):2097–2138.

Gagnepain, Philippe and Marc Ivaldi. 2002. “Incentive Regulatory Policies: The Case

of Public Transit Systems in France.” RAND Journal of Economics 33 (4):605–629.

Gagnepain, Philippe, Marc Ivaldi, and David Martimort. 2013. “The Cost of Con-

tract Renegotiation: Evidence from the Local Public Sector.” American Economic

Review 103 (6):2352–2383.

Gordon, Sanford C. and Catherine Hafer. 2014. “Conditional Forbearance as an

Alternative to Capture: Evidence from Coal Mine Safety Regulation.” In Pre-

venting Regulatory Capture: Special Interest Influence and How to Limit It, edited

by Daniel Carpenter and David A. Moss, chap. 9. Cambridge University Press,

208–239.

Gray, Wayne B and Mary E Deily. 1996. “Compliance and Enforcement: Air Pollution

Regulation in the US Steel Industry.” Journal of Environmental Economics and

Management 31 (1):96–111.

Gray, Wayne B. and Jay P. Shimshack. 2011. “The Effectiveness of Environmental

Monitoring and Enforcement: A Review of the Empirical Evidence.” Review of

Environmental Economics and Policy 5 (1):3–24.

Harrington, Winston. 1988. “Enforcement Leverage When Penalties are Restricted.”

Journal of Public Economics 37 (1):29–53.

Helland, Eric. 1998. “The Revealed Preferences of State EPAs: Stringency, Enforce-

ment, and Substitution.” Journal of Environmental Economics and Management

35:242–261.

Holland, Alisha C. 2016. “Forbearance.” American Political Science Review

110 (2):232–246.

Jia, Ruixue and Huihua Nie. 2017. “Decentralization, Collusion, and Coal Mine

Deaths.” Review of Economics and Statistics 99 (1):105–118.



REGULATOR PREFERENCES AND EXPERTISE 45

Keiser, David A and Joseph S Shapiro. 2019. “Consequences of the Clean Water

Act and the Demand for Water Quality.” The Quarterly Journal of Economics

134 (1):349–396.

Leaver, Clare. 2009. “Bureaucratic Minimal Squawk Behavior: Theory and Evidence

from Regulatory Agencies.” American Economic Review 99 (3):572–607.

Lim, Claire SH and Ali Yurukoglu. 2018. “Dynamic National Monopoly Regula-

tion: Time Inconsistency, Moral Hazard, and Political Environments.” Journal of

Political Economy 126 (1):263–312.

List, John A. and Daniel M. Sturm. 2006. “How Elections Matter: Theory and Evi-

dence from Environmental Policy.” Quarterly Journal of Economics 121 (4):1249–

1281.

Little Hoover Commission. 2009. “Clearer Structure, Cleaner Water: Improving Per-

formance and Outcomes at the State Water Boards.” Tech. rep., Little Hoover

Commission. Available at https://lhc.ca.gov/sites/lhc.ca.gov/files/Reports/195/

Report195.pdf (last accessed in August 2019).

Luo, Yao, Isabelle Perrigne, and Quang Vuong. 2018. “Structural Analysis of Non-

linear Pricing.” Journal of Political Economy 126 (6):2523–2568.

Magat, Wesley A and W Kip Viscusi. 1990. “Effectiveness of the EPA’s Regulatory

Enforcement: The Case of Industrial Effluent Standards.” The Journal of Law and

Economics 33 (2):331–360.

Mookherjee, Dilip and I. P. L. Png. 1994. “Marginal Deterrence in Enforcement of

Law.” Journal of Political Economy 102 (5):1039–1066.

Oliva, Paulina. 2015. “Environmental Regulations and Corruption: Automobile Emis-

sions in Mexico City.” Journal of Political Economy 123 (3):686–724.

Peltzman, Sam. 1976. “Toward a More General Theory of Regulation.” Journal of

Law and Economics 19 (2):211–240.

Rahm, Brian G, Natalie Morse, Michelle Bowen, Jun Choi, Dhaval Mehta, and Sridhar

Vedachalam. 2018. “Is Bigger Better? Driving Factors of POTW Performance in

New York.” Water Research 135:134–143.

Royden, Halsey Lawrence and Patrick Fitzpatrick. 1988. Real Analysis. Macmillan

New York.

Ryan, Stephen P. 2012. “The Costs of Environmental Regulation in a Concentrated

Industry.” Econometrica 80 (3):1019–1061.

Scholz, John T. 1986. “Regulatory Enforcement in a Federalist System.” American

Political Science Review 80 (4):1249–1270.



46 KARAM KANG AND BERNARDO S. SILVEIRA

Shimshack, Jay P. and Michael B. Ward. 2005. “Regulator Reputation, Enforce-

ment, and Environmental Compliance.” Journal of Environmental Economics and

Management 50:519–540.

Stigler, George J. 1971. “The Theory of Economic Regulation.” Bell Journal of

Economics and Management Science 2 (1):3–21.

Suchetana, Bihu, Balaji Rajagopalan, and JoAnn Silverstein. 2016. “Hierarchical

Modeling Approach to Evaluate Spatial and Temporal Variability of Wastewater

Treatment Compliance with Biochemical Oxygen Demand, Total Suspended Solids,

and Ammonia Limits in the United States.” Environmental Engineering Science

33 (7):514–524.

Thomas, Alban. 1995. “Regulating Pollution under Asymmetric Information: The

Case of Industrial Wastewater Treatment.” Journal of Environmental Economics

and Management 28:357–373.

Timmins, Christopher. 2002. “Measuring the Dynamic Efficiency Costs of Regulators’

Preferences: Municipal Water Utilities in the Arid West.” Econometrica 70:603–

629.

US Environmental Protection Agency. 2004. “Primer for Municipal Wastewater

Treatment Systems.” Tech. rep., Office of Wastewater Management, Office of Wa-

ter, EPA 832-R-04-001,. Available at https://www3.epa.gov/npdes/pubs/primer.

pdf (last accessed in August 2019).

Weirich, Scott R, JoAnn Silverstein, and Balaji Rajagopalan. 2011. “Effect of Aver-

age Flow and Capacity Utilization on Effluent Water Quality from US Municipal

Wastewater Treatment Facilities.” Water Research 45 (14):4279–4286.

———. 2015. “Resilience of Secondary Wastewater Treatment Plants: Prior Perfor-

mance is Predictive of Future Process Failure and Recovery Time.” Environmental

Engineering Science 32 (3):222–231.

Wolak, Frank A. 1994. “An Econometric Analysis of the Asymmetric Information,

Regulator-Utility Interaction.” Annales d’Économie et de Statistique 34:13–69.
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Appendix A. Revisiting Modeling Assumptions

A.1. The 2006 Institutional Changes and Confounding Factors. Our research

design relies on the changes in compliance and enforcement before and after the

2006 institutional changes, conditional on (time-varying) observed attributes. Section

3.3 documents unconditional time trends in compliance and enforcement (Figure 1),

and the present section shows that these trends persist even after controlling for all

observed facility and local attributes.

Column (1) of Table A1 provides the regression results of the following equation:

compliancei,q,y = βxi,q,y + µi + δq + φy + ξi,q,y,

where compliancei,q,y is a dummy indicating that no effluent MMP violations occurred

in facility i during the qth quarter of year y, and xi,q,y is a vector of all facility and

local attributes delineated in Table 1. Panel (A) in Figure A1 shows the regression

coefficient estimates of year dummies (φy) with the year of 2000 being the base year.

The estimated year dummy coefficients are not statistically different from zero for the

years of 2001–2007, while those after 2007 are significant and are greater than zero.

If we interpret these year dummy coefficients after 2006 as the effects of the 2006

institutional changes on compliance, then we conclude that there is a two-year lag.

Columns (2)–(4) of Table A1 provides the regression results of the following equa-

tion, and Panel (B) in Figure A1 shows the regression coefficient estimates of year

dummies (φ̃y) presented in Column (2):

log(penaltyv,i,q,y + 1) = αzv,i,q,y + β̃xi,q,y + µ̃i + δ̃q + φ̃y + ε̃v,i,q,y,

where penaltyv,i,q,y is the amount of penalty imposed within four years of the oc-

currence date of violation v by facility i during the qth quarter of year y, and zv,i,q,y

denotes the violation-specific attributes used in Table 2. Panel (B) in the figure shows

that the estimated year dummy coefficients are not statistically different from zero

for the years of 2001–2004, while those after 2004 are statistically significant and are

greater than zero. Given the retroactive nature of the institutional changes and the

four-year penalty window that we use in this specification, it is not a surprise that

there is an upward slopping trend among the estimated year dummy coefficients be-

tween 2002 and 2006. These results show that both compliance rates and penalties

increased after the 2006 institutional changes, even after controlling for an extensive

set of (time-varying) facility and local attributes, including treatment technology,

capacity, pollution, and weather conditions.



48 KARAM KANG AND BERNARDO S. SILVEIRA

Table A1. Compliance and Enforcement Over Time

Dependent Variable: In Compliance Log (Penalty Amount + 1)
(1) (2) (3) (4)

Year FE

2001 0.005 0.042 0.047 -0.016
(0.020) (0.241) (0.243) (0.237)

2002 0.025 -0.616 -0.612 -0.643
(0.023) (0.603) (0.572) (0.575)

2003 0.010 -0.348 -0.369 -0.345
(0.025) (0.608) (0.614) (0.610)

2004 0.036 0.262 0.263 0.225
(0.026) (0.645) (0.646) (0.639)

2005 0.018 1.556∗∗∗ 1.558∗∗∗ 1.476∗∗∗

(0.025) (0.559) (0.555) (0.550)

2006 0.033 1.895∗∗∗ 1.889∗∗∗ 1.824∗∗∗

(0.026) (0.700) (0.698) (0.678)

2007 0.037 2.426∗∗∗ 2.422∗∗∗ 2.408∗∗∗

(0.027) (0.615) (0.626) (0.586)

2008 0.053∗ 2.100∗∗∗ 2.106∗∗∗ 2.109∗∗∗

(0.028) (0.636) (0.638) (0.637)

2009 0.082∗∗∗ 2.957∗∗∗ 2.959∗∗∗ 2.914∗∗∗

(0.027) (0.597) (0.601) (0.570)

2010 0.047 4.048∗∗∗ 4.051∗∗∗ 4.026∗∗∗

(0.030) (0.732) (0.725) (0.687)

2011 0.061∗∗ 3.257∗∗∗ 3.256∗∗∗ 3.274∗∗∗

(0.031) (1.170) (1.175) (1.122)

2012 0.117∗∗∗

(0.028)

2013 0.109∗∗∗

(0.029)

2014 0.106∗∗∗

(0.029)

Quarter FE
2nd quarter (April-June) 0.027∗∗∗ -0.254 -0.328 -0.235

(0.008) (0.166) (0.212) (0.154)

3rd quarter (July-September) 0.053∗∗∗ 0.087 -0.003 0.088
(0.012) (0.121) (0.222) (0.119)

4th quarter (October-December) 0.025∗∗∗ -0.135 0.171 0.185
(0.008) (0.834) (0.140) (0.137)

(Continued)

A.2. Static vs. Dynamic Enforcement. We assume that the penalty schedule is

static in our analysis, motivated by our findings in Section 3.4. The present section

provides additional empirical evidence to support the assumption. Table A2 presents
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Table A1. Compliance and Enforcement Over Time (Continued)

Dependent Variable: In Compliance Log (Penalty Amount + 1)
(1) (2) (3) (4)

Weather & pollution

Precipitation> 75th percentile -0.034∗∗∗ -0.119
(0.009) (0.175)

Precipitation< 25th percentile 0.015∗∗ 0.019
(0.008) (0.196)

Precipitation -0.012
(0.033)

Precipitation squared 0.0001
(0.001)

Precipitation deciles
10-20th percentile -0.263

(0.290)

20-30th percentile -0.519
(0.529)

30-40th percentile 0.100
(0.297)

40-50th percentile -0.074
(0.256)

50-60th percentile 0.129
(0.280)

60-70th percentile -0.532∗

(0.303)

70-80th percentile -0.391
(0.298)

80-90th percentile -0.252
(0.288)

90-100th percentile -0.212
(0.353)

Swimmable 0.019 0.523 0.520 0.534
(0.014) (0.396) (0.388) (0.383)

Facility attributes† Yes Yes Yes Yes
Violation attributes†† No Yes Yes Yes
Facility FE Yes Yes Yes Yes
Number of observations 12,779 15,827 15,827 15,827
Adjusted R2 0.223 0.615 0.615 0.618

Notes: This table reports the OLS regression results where the dependent variables are
a dummy variable indicating if the facility was in compliance during the quarterly period
(Column (1)) and the logarithm of the sum of one and the amount of penalty imposed
within four years of the occurrence date of the violation (Columns (2)–(4)). Standard errors
are adjusted for clustering at the facility level, and are provided in parentheses; ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.01. † All facility attributes used in the main structural estimation of
the model (see Table 5). †† All violation attributes used in Table 2.
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Figure A1. Compliance and Enforcement
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(b) Average Penalty per MMP Violation
Notes: Panels (A) and (B) show the regression coefficient estimates and the 95% confidence intervals
for year dummies, where year 2000 is the base year. The dependent variable in the regression for
Panel (A) is the fraction of the domestic wastewater treatment facilities without an effluent MMP
violation, and the unit of observations is a facility×year×quarter. The dependent variable in the
regression for Panel (B) is the average penalty per effluent MMP violation assessed within 4 years of
the occurrence of the violation, and the unit of observation is a violation. We control for a variety
of facility attributes; see the text for the specifications.

the estimates of a regression model where we assess the extent to which the total

amount of penalties for the violations during the quarter is associated with the number

of total effluent MMP violations, the number of past effluent MMP violations up

to one year, and all facility and local attributes that are described in Table 1. In

Specifications (1) and (2) in Table A2, we control for the weighted sum of the number

of violations during the past four quarters, where the weights reflect “depreciation”

with a rate of 10 percent per quarter, following Blundell, Gowrisankaran, and Langer

(2020). In Specification (3), we control for the number of violations of each of the

past four quarters separately. In all three specifications, we do not find that past

violations are associated with a higher penalty for a current violation, conditional on

the number of violations during the current period and (time-varying) facility and

local attributes.

In addition, both the EPA and the California water boards stress the importance

of improper maintenance and operation, as opposed to insufficient investment, for
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Table A2. Does Past Compliance Behavior Matter for Enforcement?

Dependent variable: Log (Penalty Amount + 1) (1) (2) (3)

Current violations

Number of MMP violations 0.0341∗∗∗ 0.0358∗∗∗ 0.0347∗∗

(0.0122) (0.0130) (0.0128)

Past violations

Accumulated number of MMP violations† -0.0000330 -0.000264
(0.00503) (0.00578)

1st lagged number of MMP violations 0.00515
(0.00676)

2nd lagged number of MMP violations -0.00708
(0.00995)

3rd lagged number of MMP violations 0.00448
(0.00515)

4th lagged number of MMP violations -0.00392
(0.0124)

Technology/cost/county, weather, pollution attributes No Yes Yes

Regional water board, year, quarter FE’s Yes Yes Yes

Adjusted R2 0.143 0.190 0.190

Notes: This table reports OLS estimates. The unit of observation is a facility-quarter; 2,617
observations. Standard errors are adjusted for clustering at the facility level, and are provided
in parentheses; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. † The weighted sum of the number of MMP
violations in the past four quarters, where the weight for tth lagged number of violations is 0.9t−1.

explaining violations.1 We also find evidence corroborating this view by analyzing the

description of corrective measures that were planned or taken following the detection

of a violation in the data. Out of 3,504 violations with such a description, only 30

percent of them are associated with a need for investment—in the sense that the

corrective measure description contains words related to capital investment—while

the rest of the violations are associated with short-term measures.2

We argue that the potential efficiency loss associated with the static enforcement

scheme as observed in the data, compared to a history-dependent enforcement mech-

anism, is not likely to be large in our setting. Once initial compliance has been

achieved, violations are mainly affected by maintenance and operation of pollution

1For details, see US Environmental Protection Agency (2004) and California State Water Resources
Control Board (2010a). For example, the latter document provides details of a case in which a
facility administrator employed uncertified operators and failed to provide adequate supervision to
trainees, leading to permit violations.
2The keywords used to classify corrective measure descriptions into capital investment are: capital;
construct; design; fund; grant; install; invest; new; project; and upgrade.
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abatement equipment (Harrington, 1988), which is the case for the wastewater treat-

ment facilities. In the engineering literature, for example, Weirich, Silverstein, and

Rajagopalan (2015) find that past violations of a wastewater treatment facility in-

crease the likelihood of subsequent violations, but such effect only lasts from 2 to 5

months, depending on capacity and capacity utilization. This contrasts to the other

regulatory settings studied by Duflo et al. (2018) and Blundell, Gowrisankaran, and

Langer (2020) where the compliance is mainly achieved by (discrete) investment.

A.3. Discretion in Enforcement.

A.3.1. Identical Violations. In Section 3.4, we show that the variation in penalties,

conditional on violation priority rank and pollutant category, is explained by the fa-

cility and local attributes as well as other violations during the same quarter. This

finding does not necessarily mean that regulator’s discretion matters, because vi-

olation attributes that are not controlled for in the analysis could be driving the

conditional variation in penalties observed in the data.

To address this concern, we look at MMP violations that are identical in terms of

the pollutant and its permitted and actual amounts of discharge for a given period

(e.g. 30-day median, weekly average, etc.). Focusing on the domestic wastewater

treatment facilities’ violations from 2009–2014 that resulted in a nonzero penalty, we

identify 17 unique groups of identical violations by at least three distinct facilities,

with a total of 67 violation records. Figure A2 presents a histogram of the percentage

difference of the assigned penalty for a violation from the average penalty for its

identical violations in the group. The percentage differences range from -84 to 49,

and 48 percent of the 67 violations led to penalties that differ by more than 20 percent

from the average penalty of their group.

Table A3 shows that this observed dispersion in penalties, conditional on the de-

tailed nature and severity of violation, is explained by the number of concurrent

violations during the same quarter of the violation and some of the facility and local

attributes. This finding is consistent with our finding from Table 2 in Section 3.4.

The specifications of Columns (1) and (2) in Table A3 are similar to Columns (3) and

(6) in Table 2—except that, in the latter, we control for violation attributes, while,

in the former, we control for violation fixed effects. These fixed effects are based on

pollutant, emission limit and result, and measurement unit and period.3 By control-

ling for violation fixed effects, we look at how the remaining variation in penalties,

3For Columns (1) and (2) in Table A3, we use all effluent MMP violations by the wastewater
treatment facilities in our dataset during 2009–2014. However, the final sample size, 770, is much
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Figure A2. Heterogeneous Penalties for Identical Violations
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Notes: This figure shows a histogram of the percentage difference of the assigned penalty for a
given violation from the average penalty for its identical violations in terms of the pollutant and
the permitted and actual amounts of discharge, overlaid with a fitted Normal density function. The
histogram and the density function are based on 67 violation records with nonzero penalties, grouped
into 17 unique cases of identical violations by at least three distinct domestic wastewater treatment
facilities during 2009–2014.

as represented in Figure A2, can be explained by the factors considered in Section

3.4. We find that facilities run by a special district, built after 1982, or located in a

county with high average household income or a high population density tend to get

higher penalties in expectation.

A.3.2. Penalty Assessment: Staff vs. Board. As described in Sections 2.2 and 2.3,

the penalty assessed by the enforcement staff at the regional water board can then

be adjusted by the board. For a large fraction (86 percent) of the penalty actions

of 2009 –2015, we have data on the penalty amount assessed by staff as well as the

final penalty amount.4 Among the 263 penalty actions with the staff assessment

information, we find that the final penalty amount by the board differs from the

initial amount assessed by the staff for 63 penalty actions (24 percent), and is on

average 16 percent higher than the initial amount, with the 5th percentile being a

decrease of 44 percent and the 95th percentile being an increase of 130 percent.

smaller than that for Table 2 because we control for violation fixed effects, and most violations are
unique in terms of pollutant, emission limit and result, and measurement unit and period.
4Staring in 2007, it is required to report the staff assessment amount in the data system, but the
system may not have been set up to encourage the reporting in the beginning. As a result, we have
the staff assessment amount for 11 percent of the penalty actions from 2000-2006, 57 percent for the
2007 penalty actions, and 79 percent for the 2008 penalty actions.
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Table A3. Further Evidence on Regulatory Discretion

Dependent variable: Penalized Log (Penalty+ 1) Log(Penalty)
(1) (2) (3)

Number of current MMP violations 0.00208∗∗ 0.0186∗∗ -
(0.000992) (0.00779)

Any violations in the past semester 0.0733 0.505 -
(0.0541) (0.426)

Facility attributes
Major facility 0.148 1.491 -0.059

(0.201) (1.555) (0.101)
First operated in 1982-87 0.298∗ 2.470∗ -0.109∗∗

(0.174) (1.337) (0.051)
First operated after 1987 0.326 2.769∗ -0.117

(0.198) (1.507) (0.124)
Advanced or tertiary treatment level 0.114 0.352 0.035

(0.0953) (0.720) (0.059)
Capacity utilization > 87% 0.0627 0.496 0.014

(0.106) (0.832) (0.061)
Service population < 10,000 -0.119 -0.974 -0.146

(0.204) (1.577) (0.091)
Run by a special district 0.299∗∗∗ 2.060∗∗ 0.021

(0.0961) (0.792) (0.060)
High threat to water quality (by the board) -0.136 -1.229 0.031

(0.113) (0.910) (0.056)
County attributes

Large irrigation water use (> 67%, 2010) 0.200 1.198 -0.171∗∗

(0.166) (1.322) (0.067)
High income (>$57K, 2010) 0.296∗ 2.578∗ 0.079

(0.162) (1.303) (0.067)
High population density (> 722/mi2, 2010) 0.201 1.656 -0.066

(0.206) (1.662) (0.079)
Low population density (< 80/mi2, 2010) -0.527∗∗∗ -3.404∗∗∗ 0.114

(0.134) (1.030) (0.078)
High approval for the 2006 prop. (> 50%) -0.141 -0.642 -0.004

(0.167) (1.336) (0.055)

Log (Staff penalty assessment) - - 1.000∗∗∗

(0.013)
Violation FE† Yes Yes -
Weather and pollution†† Yes Yes Yes
Regional water board/year/quarter FEs†† Yes Yes Yes
Number of observations 770 770 344
Adjusted R2 0.675 0.667 0.933

Notes: This table reports OLS estimates. Standard errors are adjusted for clustering at the
facility level, and are provided in parentheses; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. The unit of
observation is a violation (Columns (1) and (2)) or a penalty action (Column (3)).† : Each fixed
effect parameter is associated with a group of violations that share identical pollutant, emission
limit and result, and measurement unit and period. ††: All weather and pollution attributes in
Table 1. Violation year/quarter fixed effects for (1)–(2); penalty action year fixed effects for (3).
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Table A4. Number of Permits and Staff Size in FY 2006–2007

Regional Boards Permits Compliance Enforcement Permits
Staff Staff Per Staff

North Coast 1,789 2 3 368
San Francisco Bay 5,116 11 20 165
Central Coast 2,465 11 6 145
Los Angeles 8,078 10 5 539
Central Valley 15,778 21 22 367
Lahontan 2,305 4 6 231
Colorado River 1,636 12 3 109
Santa Ana 7,757 13 8 369
San Diego 5,365 10 4 383

Source: California Water Boards Baseline Enforcement Report, FY
2006–2007. All permits for the 5 core regulatory programs, NPDES,
Stormwater, WDRs, Land Disposal, and 401 Certification, are con-
sidered in this table. The total regional board staff size is much
larger than the sum of compliance and enforcement staff size. For
example, there were 113 staff members at the San Francisco Bay
Regional Water Quality Control Board during the period.

To investigate the sources of the variation in the adjustment made by the board,

we regress the logarithm of the final penalty amount on the logarithm of the initial

amount and (time-varying) facility and local attributes. Column (3) of Table A3

provides the regression results. By controlling for the initial penalty amount by the

staff, we control for all violation attributes as assessed by the staff, and thus the

remaining variation represents the discretion of the regional water board, including

any efforts to obtain and evaluate extra, relevant information on violations after the

staff decisions. We find that facilities located in a county where more than 2/3 of

the fresh water is used for irrigation tend to get a “discount” in penalties, further

supporting the idea that regulatory discretion is important in understanding the

penalty disparities in the data, consistent with our findings in Section 3.4.

A.4. Heterogenous Enforcement Resources. The regional water boards differ

by their resources to enforce the regulations. Table A4 shows the number of permits

and staff size by the regional boards.

Appendix B. More on Theory and Identification

B.1. Proofs for Sections 4 and 5.
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B.1.1. Lemma A1. Consider any continuous function e(·) with domain a ∈ [0, a],

where a <∞. Then, for any δ > 0, there exists ε(·) : N→ R such that

sup
a∈[0,a]

∣∣∣∣∣e(a)− exp(−a)
∞∑
k=0

ε(k)

k!
ak

∣∣∣∣∣ < δ.

Proof. For any continuous e(·) and δ > 0, by the Weierstrass approximation theorem,

the regulator can select a polynomial
∑Kδ

k=0 βka
k such that

sup
a∈[0,a]

∣∣∣∣∣e(a) exp(a)−
Kδ∑
k=0

βka
k

∣∣∣∣∣ < δ,

where we make explicit the dependency between the polynomial degree Kδ and δ

(Royden and Fitzpatrick, 1988). With ε(k) = βkk!1{k≤Kδ}, for every a ∈ [0, a],∣∣∣∣∣e(a)− exp(−a)
∞∑
k=0

ε(k)

k!
ak

∣∣∣∣∣ = exp(−a)

∣∣∣∣∣e(a) exp(a)−
Kδ∑
k=0

βka
k

∣∣∣∣∣ < exp(−a)δ ≤ δ.

�

B.1.2. Proof of Proposition 1. Let ã(θ) denote the value of a which satisfies the reg-

ulator’s first order condition, (9), for a given θ ∈ (0, θ̄). In the text, we have shown

that the negligence schedule, denoted by a∗(θ) ≡ max{0, ã∗(θ)} for all θ in its sup-

port, is optimal. Given Assumption 1 and our assumption that F (·) is continuously

differentiable, a∗(·) is continuous. Here, we show that ã∗(·) is strictly increasing, and

hence a∗(·) is nondecreasing. Denoting ϕ(θ) ≡ (1−ψ)θ+ ψ[1−F (θ)]
f(θ)

and differentiating

both sides of (9) with respect to θ, we obtain:(
h′′[ã∗(θ)]− b′′[ã∗(θ)]ϕ(θ)

)
ã∗′(θ)− b′[ã∗(θ)]ϕ′(θ) = 0.

By Assumption 1, b′(·) > 0 and by Assumption 2(i), ϕ′(·) > 0. Furthermore, by

Assumption 2, h′′[ã∗(θ)]− b′′[ã∗(θ)]ϕ(θ) > 0, which completes the proof. �

B.1.3. Proof of Lemma 1. Fix any time period t. The moment generating function

of the number of violations Kt, MKt(·), is:

MKt(s) = EKt(eks) = EAt [EKt(eks|a)] = EAt [ea(es−1)] = MAt(e
s − 1).

where the third equality follows from the moment generating function of the Poisson

distribution with mean a. Because At has a bounded support, [0, at(θ)], MKt(s) exists

for any s ∈ R. Letting u = es − 1 shows MAt(u) = MKt [log(1 + u)], for u ∈ (−1,∞).

Hence, MAt(·) is identified on a neighborhood of 0, thereby identifying Gt(·). �
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B.1.4. Proof of Lemma 2. The first equation follows from F (·) and b(·) not changing

over time and from the strict monotonicity ã(·, j) in its first argument. Concerning

the second equation, from (3), we have that θ̃(a, j)b′(a) = e′j(a) for j ∈ {pre, post},
which implies that θ̃(a, post) =

e′post(a)

e′pre(a)
θ̃(a, pre). �

B.1.5. Proof of Proposition 2. We first show by induction that θl = θ̃(al, post) =

θ̃(al+1, pre). From the normalization, θ0 = θ̃(a0, post). For any l, let θl = θ̃(al, post).

Then, al+1 = TH(al) = ã
[
θ̃(al, post), pre

]
= ã(θl, pre), where the first and second

equalities are due to the definition of at+1 and Lemma 2, respectively. Thus, θl =

θ̃(al+1, pre). Moreover, θl+1 = T V (θl, al+1) = T V
[
θ̃(al+1, pre), al+1

]
, where the second

equality is due to the definition of θl+1. Therefore, from Lemma 2, we have that

θl+1 = θ̃(al+1, post). We can then use (3) to write b′(al) =
e′pre(al)

θl−1
=

e′post(al)

θl
. Moreover,

F (θl) is identified by F (θl) = Gpost (al) = Gpre (al+1) . �

B.1.6. Proof of Proposition 3. Let Q(α) denote α-quantile of F (·). We can rewrite

equation (9) as

b′
[
G−1
j (α)

] [
(1− ψj)Q(α) +

ψj(1− α)

f [Q(α)]

]
=

R∑
r=1

γj,r
[
G−1
j (α)

]r−1
. (A.1)

We may also rewrite equation (3) as:

e′j
[
G−1
j (α)

]
= Q(α)b′

[
G−1
j (α)

]
. (A.2)

Using equation (A.2) and the relationship between the density and its quantile func-

tion, i.e.,f [Q(α)] = 1/Q′(α), we rewrite equation (A.1) as

e′j
[
G−1
j (α)

]
Q(α)

[(1− ψj)Q(α) +Q′(α)ψj(1− α)] =
R∑
r=1

γj,r
[
G−1
j (α)

]r−1
,

which implies

Q′(α)

Q(α)
=

∑R
r=1 γj,r

[
G−1
j (α)

]r−1 − e′j
[
G−1
j (α)

]
(1− ψj)

e′j
[
G−1
j (α)

]
ψj (1− α)

, (A.3)

for j ∈ {pre, post}. Define Γj,r ≡ γj,r
ψj

and Ψj =
1−ψj
ψj

, and notice that there is a

one-to-one relationship between
(
{Γj,r}Rr=1 ,Ψj

)
and

(
{γj,r}Rr=1 , ψj

)
. Integrating the

above equation from some α0 to α gives

log
Q(α)

Q(α0)
=

∫ α

α0

(
R∑
r=1

Γj,r

[
G−1
j (u)

]r−1

e′j
[
G−1
j (u)

] −Ψj

)
1

(1− u)
du. (A.4)
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Remember that F (θl) = Gj [ã(θl, j)]. From Proposition 2, there is a vector {θl}L̄l=0

such that ã(θl, j) is known for j ∈ {pre, post}. Since equation (A.4) holds for arbitrary

α and α0, the following holds for for any l ∈ {1, . . . , L̄} and j ∈ {pre, post}:

log
θl
θ0

=
R∑
r=1

Γj,r

∫ Gj [ã(θl,j)]

Gj [ã(θ0,j)]

[
G−1
j (u)

]r−1

e′j[G
−1
j (u)] (1− u)

du−Ψj

∫ Gj [ã(θl,j)]

Gj [ã(θ0,j)]

1

(1− u)
du. (A.5)

Furthermore, we obtain the following equations for any α by observing that equation

(A.3) holds for both regimes:∑R
r=1 Γpost,r

[
G−1
post(α)

]r−1

e′post
[
G−1
post(α)

] −
∑R

r=1 Γpre,r
[
G−1
pre(α)

]r−1

e′pre
[
G−1
pre(α)

] + Ψpre −Ψpost = 0. (A.6)

For each regime, equation (A.5) specifies a system of L̄ linear equations and R +

1 unknowns
(
{Γj,r}Rr=1 andΨj

)
, and equation (A.6) specifies an infinite number of

equations. Assumption 5 suffices for a system consisting of equations (A.5) and (A.6)

to have an unique solution for {γpre,r}Rr=1 , {γpost,r}
R
r=1 , ψpre and ψpost. Now, setting

α0 = Gj(a0) in equation (A.4), we identify Q(·) and, accordingly, F (·) and f(·).
Lastly, using equation (A.1), we identify b′(a) for a ∈ Apre ∪ Apost.

Our model is over-identified because we can evaluate (A.6) at an arbitrarily large

number of quantiles. Moreover, for each regime, there is at least one more equation

that we could use for the identification of the model primitives, which we obtain by

evaluating equation (9) at the upper bounds of Aj’s. �

B.2. Comparative Statics. We study how the equilibrium violations and the strin-

gency in enforcement vary with the regulator preferences (γ, ψ) and the compliance

costs. To simply capture the heterogeneity of costs, we introduce a parameter, β,

which enters in b′(a, β). We assume that ∂b′(a, β)/∂β > 0.

Corollary A1. Under Assumptions 1 and 2, for any θ ∈ (0, θ), (i) the optimal

negligence level for θ, a(θ), is decreasing in γ; (ii) if −θ + 1−F (θ)
f(θ)

> 0 and b′′(·) < 0,

then a(θ) is increasing in ψ; and (iii) if b′′(·) < 0, a(θ) is increasing in β.

Proof. The comparative statics on violations are based on the regulator’s first order

condition:

γ − b′[a(θ)]

(
(1− ψ)θ +

ψ{1− F (θ)}
f(θ)

)
= 0. (A.7)

First, taking a derivative of (A.7) with respect to γ:

1− b′′[a(θ)]

(
(1− ψ)θ +

ψ{1− F (θ)}
f(θ)

)
∂a(θ)

∂γ
= 0.
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Rearranging the above equation:

∂a(θ)

∂γ
=

[
b′′[a(θ)]

(
(1− ψ)θ +

ψ{1− F (θ)}
f(θ)

)]−1

.

By Assumption 2, a(θ) is decreasing in γ for any θ. Second, taking a derivative of

(A.7) with respect to ψ:

−b′′[a(θ)]

(
(1− ψ)θ +

ψ{1− F (θ)}
f(θ)

)
∂a(θ)

∂ψ
− b′[a(θ)]

(
−θ +

1− F (θ)

f(θ)

)
= 0.

Rearranging the above equation:

∂a(θ)

∂ψ
= −b′[a(θ)]

(
−θ +

1− F (θ)

f(θ)

)[
b′′[a(θ)]

(
(1− ψ)θ +

ψ{1− F (θ)}
f(θ)

)]−1

.

Under Assumptions 1 and 2, a(θ) is increasing in ψ if
(
−θ + 1−F (θ)

f(θ)

)
is positive for

any given θ. Lastly, taking a derivative of (A.7) with respect to β:

−
(

(1− ψ)θ +
ψ{1− F (θ)}

f(θ)

)(
∂b′[a(θ)]

∂a

∂a(θ)

∂β
+
∂b′[a(θ)]

∂β

)
= 0.

Rearranging the above equation:

∂a(θ)

∂β
= − 1

b′′[a(θ)]

(
∂b′[a(θ)]

∂β

)
.

Thus, as b(·) is strictly concave, a(θ) is increasing in β for any θ. �

We consider the stringency of enforcement as e′[a(θ)]. The following proposition

shows our comparative statics results on e′[a(θ)].

Corollary A2. Suppose the assumptions for Proposition 1 are satisfied. Then, for

any θ ∈ (0, θ), (i) e′[a(θ)] is increasing in γ; (ii) if −θ + 1−F (θ)
f(θ)

> 0 and b′′(·) < 0,

then e′[a(θ)] is decreasing in ψ; and (iii) if b′′(·) < 0, then e′[a(θ)] is decreasing in β.

Proof. We start with the facility’s first order condition:

θb′[a(θ)] = e′[a(θ)], (A.8)

First, taking a derivative of (A.8) with respect to γ:

θb′′[a(θ)]
∂a(θ)

∂γ
=
∂e′[a(θ)]

∂γ
+ e′′[a(θ)]

∂a(θ)

∂γ
.

We have shown that a(θ) is decreasing in γ and a(·) is implemented. The latter implies

that the second order condition for the facility holds. Hence, e′[a(θ)] is increasing in
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γ for any θ. Second, taking a derivative of (A.8) with respect to ψ:

θb′′[a(θ)]
∂a(θ)

∂ψ
=
∂e′[a(θ)]

∂ψ
+ e′′[a(θ)]

∂a(θ)

∂ψ
.

Because the second order condition for the facility holds, e′[a(θ)] is decreasing in ψ if

a(θ) is increasing in ψ. Lastly, taking a derivative of (A.8) with respect to β:

θb′′[a(θ)]
∂a(θ)

∂β
+ θ

∂b′[a(θ)]

∂β
=
∂e′[a(θ)]

∂β
+ e′′[a(θ)]

∂a(θ)

∂β
.

Because the second order condition for the facility holds, e′[a(θ)] is increasing in β

for any given θ if a(θ) is increasing in β. �

Appendix C. Estimation Procedure

Step 1. We parametrically estimate the expected penalties as specified in (13) by

MLE. Given the estimates, we estimate the marginal expected penalty, ê′j (a|x) using

equation (1) for j = {pre, post}. To estimate Gj(·|x), we use the parametric speci-

fication presented in Section 5.3.2. Such a specification implies that the number of

violations follows a Poisson-Gamma distribution, which is equivalent to a negative

binomial distribution with mean exp (β0,j + β1xi,t) and variance exp (β0,j + β1xi,t)

[1 + ∆(zi,t)
−1 exp (β0,j + β1xi,t)], where ∆(zi,t) ≡ exp(zi,tδ) is the overdispersion pa-

rameter. We are thus able to estimate δ and βj’s by MLE, using a negative binomial

regression. See Cameron and Trivedi (2013) for details about this estimator.

Step 2. We denote by θ̂(a, j|x) an estimator of the facility type that sets negligence

level a under regime j, given x. We normalize θ̂(1, post) = 1, and employ the empirical

counterparts of the transforms TH and T V , defined in (11) and (12), to obtain θ̂(a, j|x)

for a sequence of values of a. Normalizing â0(x) = θ̂0(x) = 1, we define recursively:

âl(x) ≡ Ĝ−1
pre

[
Ĝpost [âl−1(x)|x] |x

]
,

and θ̂l(x) ≡
ê′post [âl(x)|x]

ê′pre [âl(x)|x]
θ̂l−1(x).

Define θ̂postl (x) ≡ θ̂l(x), θ̂prel (x) ≡ θ̂l−1(x), âpostl (x) ≡ âl(x) and âprel (x) ≡ âl(x), for

every l. We use θ̂jl (x) as an estimator of θ̃
(
âjl (x), j|x

)
, for j ∈ {pre, post} and any l.

Step 3. Equation (A.5) implies that

∑
l

{
log

θl
θ0

−
R∑
r=1

Γj,r

∫ αl

α0

[
G−1
j (u)

]r−1

e′j
[
G−1
j (u)

]
(1− u)

du+ Ψj

∫ αl

α0

1

(1− u)
du

}2

= 0,
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for j ∈ {pre, post}. Also, from (A.6), we have

∑
α∈U

{∑R
r=1 Γpost,r

[
G−1
post(α)

]r−1

e′post
[
G−1
post(α)

] + Ψpre −
∑R

r=1 Γpre,r
[
G−1
pre(α)

]r−1

e′pre
[
G−1
pre(α)

] −Ψpost

}2

= 0,

where U = {α1, . . . , αNU} is a grid in the (0, 1) interval such that G−1
post(α) > 0 for

all α ∈ U . We estimate {Γpre,r(x)}Rr=1, Ψpre(x) , {Γpost,r(x)}Rr=1 and Ψpost(x) using a

sample analogue of the above two equations for any given x. In our application, the

system comprised by these equations is over-identified, so we employ the least-squares

solution. We then estimate {γj,r(x)}Rr=1 and ψj(x) as

ψ̂j(x) ≡ 1

1− Ψ̂j(x)
and γ̂j,r(x) ≡ Γ̂j,r(x)ψ̂j(x),

for j ∈ {pre, post} and r = {1, . . . , R}. In solving the equations, we constrain the

least-squares solution to ensure all regulator parameter estimates are positive.5

Step 4. From the empirical analogue to (A.4) with α0 = 0, we estimate the quantile

function associated with the distribution of types, conditional on x, as

Q̂j (α|x) ≡ θ̂j0(x) exp

∫ α

Ĝj[âj0(x)|x]

 R∑
r=1

Γj,r(x)

[
Ĝ−1
j (u|x)

]r−1

e′j

[
Ĝ−1
j (u|x)|x

] −Ψj(x)

 1

(1− u)
du

 ,

for j ∈ {pre, post}. An estimator for F (·|x), or F̂j(·|x), is the inverse of Q̂j (·|x)—

which, under Assumption 2, is guaranteed to exist. Finally, we define

b̂′j (a|x) ≡ ê′j (a|x) /Q̂j[Ĝj (a|x) |x],

and numerically integrate the above expression over a to obtain b̂j (a|x). For any finite

sample, we might have F̂pre(·|x) 6= F̂post(·|x) and b̂′pre (·|x) 6= b̂′post (·|x), even though

our estimator is consistent. In our counterfactual analyses, we employ F̂pre(·|x) and

b̂′pre (·|x) for scenarios referring to the pre-2006 period, and F̂post(·|x) and b̂′post (·|x)

for post-2006 scenarios.

Appendix D. Counterfactual Analyses Details

We now provide details on the implementation of the counterfactual analyses de-

scribed in Section 6.5. As in our empirical application, we assume that the social

costs of negligence are linear—that is, R = 1.

5We find that the constrained estimates are different from the unconstrained ones for 25 (11 percent)
out of the 221 facilities in estimation.
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D.1. Uniform Penalties. We start by considering the case in which the regulator

chooses a single nonlinear penalty schedule to be applied to all facilities. For com-

putational convenience, we restrict our attention to polynomial schedules of degree

three. Specifically we assume that the regulator sets ε̃ ≡ {ε1, ε2, ε3}, and the penalty

for a facility with k violations in a quarter is

ε(k; ε̃) =

ε1k + ε2k
2 + ε3k

3 if k ≥ 1,

0 otherwise.

Given our assumption that the number of violations follows a Poisson distribution

with mean a, we can then write the expected penalty as

e(a; ε̃) = E[ε(k; ε̃)|a] = ε1a+ ε2(a+ a2) + ε3(a+ 3a2 + a3),

for a facility that sets the negligence level a ≥ 0.6 From the facility’s FOC (3), and

given a choice of ε̃ by the regulator, we compute the negligence level set by a facility

with type θ and observed attributes x as the solution to

θb̂′(a|x) = ε1 + ε2(1 + 2a) + ε3(1 + 6a+ 3a2).

Let a(θ,x, ε̃) denote this solution. We can then take the expectation of (4) over the

facility attributes X to write the objective function of the regulator as

EX

(
EΘ|X

[
−θb̂ (a(θ,x, ε̃)|x) + γ̂j(x)a(θ,x, ε̃) + ψ̂j(x)e (a(θ,x, ε̃); ε̃) |x

])
,

j ∈ {pre, post}. We minimize this objective function numerically to obtain ε1 =

1, 764.10, ε2 = 0.00 and ε3 = 2.47 for j = pre; and ε1 = 2, 360.98, ε2 = 45.94 and

ε3 = −0.48 for j = post.

In the main text we report that the uniform schedule above leads to a reduction in

negligence levels of six percent, but it also increases the total amount of penalties, rel-

ative to the baseline enforcement schedule. To obtain a flexible schedule that achieves

the same reduction in negligence levels without increasing the assigned penalties, we

proceed as follows: first we classify each facility as having either high or low compli-

ance costs, based on whether their median marginal cost, defined in footnote 39, is

above or below the median marginal cost across all facilities. Then, given an arbi-

trary number ξH , and for every facility with high compliance cost, we use the FOC

(3) to determine the penalty schedule that would induce an increase of ξH percent

6This equation is based on the known closed form solution for the following power series: (i)∑∞
k=0

ak

k! = ea; (ii)
∑∞
k=0 k

ak

k! = aea; (iii)
∑∞
k=0 k

2 ak

k! = (a + a2)ea; and (iv)
∑∞
k=0 k

3 ak

k! =

(a+ 3a2 + a3)ea.
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in the negligence level set by every possible realization of that facility’s type Θ, rel-

ative to the baseline scenario. Similarly, given an arbitrary ξL, and for every facility

with low compliance cost, we determine the penalty schedule that would lead to a

decrease of ξL percent in the negligence level set by every possible realization of that

facility’s type. In other words, starting from the baseline scenario, we manipulate

the penalty schedules so that high compliance cost facilities are expected to violate

more, whereas low cost facilities are expected to violate less. By setting ξH = 20 and

ξL = 30.5, we obtain a reduction of six percent in the average violation frequency

across all facilities—exactly the same reduction that would arise under the uniform

policy. Moreover, the total amount of penalties under this targeted manipulation of

the schedules would be 2.5 percent below that in the uniform scenario. We would like

to stress that the manipulation defined above is just one example, and a particularly

simple one. It is likely that another choice of the values ξH and ξL or a partition of

the facilities into more than two compliance cost groups would achieve even larger

reductions in the total penalties, relative to the uniform scenario, while maintaining

the same average violation frequency.

D.2. Linear Penalties. Now we address the computation of the optimal linear

penalties, from the regulator’s perspective. Consider a facility with observed at-

tributes x, and let b̂′
−1

(·|x) denote the inverse of b̂′(·|x). From the FOC of the facility,

(3), given per-violation penalty p, the facility chooses its negligence level according

to a = b̂′
−1

(p/θ|x). Thus we may rewrite (4), the regulator’s objective function, as

EΘ|X

[
−θb̂

(
b̂′
−1

(p/θ|x)
∣∣∣x)+ b̂′

−1

(p/θ|x)
(
γ̂j(x) + ψ̂j(x)p

) ∣∣∣x] ,
subject to p > 0, for j ∈ {pre, post}. We minimize this function numerically.

Finally we consider the computation of the linear penalty that leads to the same

expected number of violations as in the baseline scenario. Let âj(x) denote the

mean baseline negligence level set by a facility with observed attributes x in period

j ∈ {pre, post}. We numerically solve for p the equation

EΘ|X

[
b̂′
−1
(
p/θ
∣∣∣x) |x]− âj(x) = 0,

using the optimal linear schedule calculated above as a starting point.

Appendix E. Further Discussions on the Estimation Results

This section presents empirical results that, due to space considerations, we do

not show in the main text. First, we present the results from the first step in the
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estimation procedure. Second, we argue that the estimated model satisfies the as-

sumptions in Sections 4 and 5, which are sufficient for equilibrium characterization

and the identification of model primitives. Third, we present the distribution of the

regulator preference estimates by the regional board. Fourth, we report our results

based on the estimated regulator preferences in the post-2006 period. Fifth, we pro-

vide further results on the extent to which the heterogeneity in regulator preferences

explain penalty disparities across facilities. Sixth, we discuss how to compute the

regulator’s expected costs based on our estimates and how these costs vary across the

baseline scenario and each of the five counterfactual scenarios of Table 6 in Section

6. Lastly, we provide the results of five additional counterfactual analyses, which we

refer to throughout the main text but do not include in Table 6.

E.1. Penalty Schedule and Negligence Distribution Estimates. In Table A5,

we present the penalty schedule estimates, φ’s in (13), and the estimates of the

negligence distributions, δ and β’s in Section 5.3.2. Consistent with the preliminary

results discussed in Section 3, we find that φ̂1,post > 0. That is, given the same number

of violations, a facility expects to pay a higher penalty in the period following the

changes, relative to the prior periods. Furthermore, β̂0,pre − β̂0,post < 0; the facilities

decrease negligence levels after the changes.

E.2. Model Primitives and the Assumptions. Assumptions 1 and 2 in Section

4 are used in Proposition 1 to characterize the equilibrium negligence schedule. For

every facility, the estimated γpre and γpost are positive, and the estimated b′(·) is

positive all over its domain. Thus, Assumption 1 is satisfied. As for Assumption 2(i),

our estimated distribution of types for each facility satisfies the strict monotonicity

of ϕj(θ) ≡ (1− ψj)θ +
ψj [1−F (θ)]

f(θ)
in θ, for j ∈ {pre, post}. In addition, given that the

estimates of ϕj(θ) are positive for all θ and j ∈ {pre, post}, ϕj(·) > 0. Our estimates

also satisfy Assumption 2(ii): the estimated function b′(·) is strictly decreasing for all

facilities; and h(·) is assumed to be linear.

Assumption 3 is used in Proposition 2 for the partial identification of the distri-

bution of compliance costs. In our estimation of the enforcement function specified

in (13), the parameter φ1,post is positive, implying that the marginal enforcement

function in the post-2006 period is always above that in the pre-2006 period.

We employ Assumptions 4 and 5 in Proposition 3 to achieve the identification of

the regulator preferences and the exact identification of the facilities’ compliance cost

distribution. Since we do not directly observe the function h(·), Assumption 4 is
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Table A5. Penalty Schedule and Negligence Distribution Estimates

Penalties Negligence

φ1,post 0.76∗∗∗(0.15) -
φ1,k 0.05∗∗∗(0.01) -
φ2,k2 4.94 (9.18) -
σ2 0.50∗∗∗(0.06) -
σ12 0.27∗(0.16) -
β0,post − β0,pre - -0.26∗∗∗(0.10)

φ1,x φ2,x β1 δ

Facility attributes
Major facility 0.49∗∗∗(0.21) 0.12 (0.10) -0.20 (0.14) -
First operated in 1982-87 -0.04 (0.18) -0.01 (0.08) -0.06 (0.15) -
First operated after 1987 -1.28∗∗∗(0.56) -0.01 (0.17) -0.35 (0.27) -
Advanced or tertiary 0.06 (0.15) 0.05 (0.07) -0.22∗(0.12) -
Capacity utilization> 87% 0.19 (0.16) -0.01 (0.09) -0.24∗∗(0.11) -
Service pop.< 10K 0.20 (0.21) -0.07 (0.07) 0.12 (0.15) -
Run by a special district -0.13 (0.15) -0.14∗∗(0.07) -0.38∗∗∗(0.12) -
High threat to water 0.24 (0.16) 0.08 (0.06) -0.28 (0.13) -

Weather & pollution
Precipitation> 75th pct. 0.04 (0.17) 0.00 (0.06) -0.03 (0.12) -
Precipitation< 25th pct. 0.29 (0.23) 0.04 (0.11) -0.06 (0.13) -
Swimmable -0.13 (0.14) 0.00 (0.06) -0.14 (0.11) -

County attributes
Irrigation use> 67% -0.15 (0.18) -0.05 (0.10) 0.34∗∗(0.15) -
Household income> $57K 0.50∗∗(0.24) 0.25 (0.16) 0.40 (0.17) -
Pop. density> 722/mi2 -0.36 (0.27) -0.05 (0.13) -0.51∗∗(0.19) -
Pop. density< 80/mi2 -0.12 (0.21) 0.30∗∗∗(0.12) -0.29 (0.19) -
Prop. approval> 50% 0.28 (0.25) 0.16 (0.11) -0.43∗∗(0.19) -

Regional water board FE†
Region 2: San Francisco Bay 1.62∗∗∗(0.37) 0.09 (0.18) -1.31∗∗∗(0.25) -0.84∗∗∗(0.18)
Region 3: Central Coast 0.82 (0.38) -0.05 (0.19) -0.83∗∗∗(0.28) -0.41∗(0.21)
Region 4: Los Angeles -0.08 (0.37) -0.40∗∗(0.16) 0.78 (0.26) -0.73 (0.16)
Region 5: Central Valley 0.99 (0.26) 0.19 (0.18) 0.21 (0.18) -0.43∗∗∗(0.12)
Region 7: Colorado River 1.17∗∗∗(0.34) 0.33 (0.20) 0.42 (0.21) -0.34 (0.17)
Region 8: Santa Ana 2.32∗(1.19) -0.09 (0.30) 0.29 (0.27) -0.95∗∗∗(0.17)
Region 9: San Diego 1.79 (5.24) 0.08 (0.24) -0.09 (0.98) -2.93∗∗∗(0.41)

Constant -1.63∗∗∗(0.48) 7.51∗∗∗(0.27) 0.94∗∗∗(0.36) -1.89∗∗∗(0.10)
Number of observations 729 8,429

Notes: Bootstrap standard errors are in parentheses; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. We esti-
mate the parameters of the penalty schedules in (13) by MLE, employing facility-quarter observa-
tions of 2000-2001 and 2009-2010. The parameters of the negligence distributions are estimated by
MLE, based on facility-quarter observations in the periods 2002-2005 and 2011-2014. See Section
3.1 and Table 1 for the description of the control variables. † Region 1 (North Coast) is omitted.
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Table A6. Distribution of the Estimated Regulator Preferences

Before the 2006 Changes After the 2006 Changes
Mean SD Min Max Mean SD Min Max

Marginal external costs (γ), by regional water boards
Region 1: North Coast 2,490 1,025 898 4,183 2,653 775 1,378 3,980
Region 2: San Francisco Bay 3,478 371 2,745 4,050 3,510 394 2,811 4,143
Region 3: Central Coast 3,170 598 2,241 4,516 2,935 474 2,154 3,722
Region 4: Los Angeles 2,955 1,977 1,066 7,878 2,197 618 1,406 3,091
Region 5: Central Valley 4,658 995 2,734 8,020 3,434 570 2,291 4,782
Region 7: Colorado River 5,486 880 3,706 6,332 4,176 581 3,454 4,989
Region 8: Santa Ana 2,683 276 2,204 3,168 2,530 283 2,028 2,960
Region 9: San Diego 3,767 421 3,008 4,099 3,648 368 3,027 3,958

Marginal enforcement costs (ψ), by regional water boards
Region 1: North Coast 1.18 0.49 0.50 1.98 0.38 0.15 0.14 0.64
Region 2: San Francisco Bay 0.92 0.19 0.38 1.00 0.45 0.25 0.10 1.00
Region 3: Central Coast 0.56 0.22 0.40 1.35 0.16 0.06 0.11 0.40
Region 4: Los Angeles 0.98 0.22 0.75 1.58 0.27 0.09 0.13 0.38
Region 5: Central Valley 0.77 0.31 0.35 1.78 0.17 0.06 0.08 0.31
Region 7: Colorado River 0.59 0.23 0.39 1.02 0.13 0.03 0.09 0.19
Region 8: Santa Ana 0.77 0.30 0.36 1.00 0.36 0.21 0.10 0.60
Region 9: San Diego 0.40 0.34 0.15 1.00 0.22 0.23 0.06 0.62

Notes: This table provides summary statistics of the estimated regulator preference parame-
ters, before and after the 2006 institutional changes, for each regional water board.

non-testable. That we are able to solve the system of equations implied by (A.5) and

(A.6) indicates that our estimates satisfy Assumption 5.

E.3. Distribution of the Estimated Regulator Preferences. Table A6 shows

the distribution of the estimated regulator preference parameters for each regional

board. There is a considerable level of heterogeneity across regional boards: prior to

the 2006 institutional change, the average γ estimates within a regional board varies

from 2,490 (Region 1) to 5,486 (Region 7), and the average ψ estimates varies from

0.40 (Region 9) to 1.18 (Region 1). The within-region heterogeneity in the γ and ψ

estimates is also large, reflecting variation in observed facility attributes other than

the regional boards, such as the facility size and the residents’ average income in the

facility location (Table 5 in Section 6.3); for example, the γ estimates prior to 2006

in Region 4 range from 1,066 to 7,878.

E.4. Results based on the Regulator Preferences after the 2006 Changes.

Most results presented in Section 6 are based on the model primitive estimates for

the periods prior to the 2006 institutional changes. Here we provide the results

based on the estimates for the periods after the 2006 changes. Given that these
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Table A7. Explaining Regulators’ Preferences: After the 2006 Changes

Dependent variables: log γ logψ

Facility attributes
Major facility 0.143∗∗∗ (0.019) -0.078 (0.092)
First operated in 1982-7 -0.005 (0.009) 0.046 (0.076)
First operated after 1987 -0.018 (0.018) -0.468∗ (0.261)
Advanced or tertiary 0.008 (0.011) -0.005 (0.069)
Capacity utilization> 87% -0.033∗∗∗ (0.012) 0.243∗∗∗ (0.090)
Service pop.< 10K -0.007 (0.021) -0.092 (0.078)
Run by a special district -0.192∗∗∗ (0.010) 0.161∗∗∗ (0.060)
High threat to water 0.061∗∗∗ (0.011) -0.012 (0.063)

Weather & pollution
Precipitation> 75th pct. -0.016 (0.013) 0.105 (0.085)
Precipitation< 25th pct. 0.021 (0.029) -0.013 (0.199)
Swimmable -0.059∗∗∗ (0.018) -0.058 (0.069)

County attributes
Irrigation use> 67% -0.048∗∗∗ (0.014) -0.075 (0.102)
Average household income> $57K 0.306∗∗∗ (0.013) -0.477∗∗∗ (0.101)
Population density> 722/mi2 -0.100∗∗∗ (0.011) 0.265∗∗ (0.109)
Population density< 80/mi2 0.246∗∗∗ (0.017) 0.184∗ (0.109)
Proposition 84 approval> 50% 0.116∗∗∗ (0.012) 0.020 (0.105)

Regional water board FE†
Region 2: San Francisco Bay 0.135∗∗∗ (0.035) 0.380∗∗ (0.162)
Region 3: Central Coast 0.034 (0.031) -0.295∗∗ (0.122)
Region 4: Los Angeles -0.242∗∗∗ (0.036) -0.330∗∗∗ (0.164)
Region 5: Central Valley 0.356∗∗∗ (0.031) -0.593∗∗∗ (0.096)
Region 7: Colorado River 0.518∗∗∗ (0.039) -1.036∗∗∗ (0.202)
Region 8: Santa Ana 0.098∗∗∗(0.034) 0.068 (0.207)
Region 9: San Diego 0.147∗∗∗ (0.039) -0.232 (0.345)

Constant 7.648∗∗∗(0.051) -1.157∗∗∗(0.199)
Adjusted R2 0.942 0.585

Notes: This table reports the OLS regression results of the logarithm of the estimated marginal
compliance cost and the logarithm of the estimated regulator preferences for each of the 221
facilities active in the first quarter of 2005 on all facility attributes used in the estimation. Robust
standard errors under the assumption that the estimated parameters are measured without error
are in parenthesis; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

results are qualitatively similar to those presented in Section 6, we omit the bootstrap

confidence intervals. Table A7 documents the results of regressing the logarithm of

the regulator preference estimates for the periods after the 2006 changes on the facility

and local attributes. Tables A8 and A9 present the counterfactual analyses results,

the counterparts of Tables 6 and 7 in Section 6.

E.5. Revisiting Disparities in Penalties and Regulator Preferences. Figure

A3 shows the point-wise differences between the 5th and 95th percentiles of penalty
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Table A8. The Effects of Regulatory Discretion: Further Results

Baseline Median Uniform Linear ψ = 0 Green
(1) (2) (3) (4) (5) (6)

Prior to the 2006 institutional changes
Violation frequency

Mean 1.082 1.141 1.016 1.018 0.833 0.529
SD 0.785 1.000 0.636 0.745 0.522 0.465

Penalty
Mean 2,380.8 2,096.3 2,411.8 2,757.6 3534.7 4,205.6
Dispersion 1,121.9 999.5 - 1,370.5 1425.4 216.9

After the 2006 institutional changes
Violation frequency

Mean 0.838 0.801 0.810 0.820 0.799 0.605
SD 0.603 0.600 0.558 0.594 0.548 0.456
Proportional, Mean - -0.044 -0.033 -0.022 -0.047 -0.279
Proportional, SD - -0.006 -0.074 -0.015 -0.092 -0.244

Penalty
Mean 2,151.4 2,070.1 2,288.1 2,324.2 2,577.4 2,986.8
Dispersion 1,035.8 513.7 - 988.2 810.0 125.9
Proportional, Mean - -0.038 0.064 0.080 0.198 0.388
Proportional, Dispersion - -0.504 -1.000 -0.046 -0.218 -0.878

Notes: This table presents the summary statistics on compliance and enforcement under
the baseline and the five counterfactual scenarios that reduce the regulator’s discretion in
Section 6.5. See Table 6 for the proportional changes compared to the baseline outcomes,
based on the estimates for the period prior to the 2006 institutional changes.

schedules across the 221 facilities active in the first quarter of 2005 under the baseline

scenario and the median regulator scenario (top lines), the 10th and 90th percentiles

(middle lines) and the 25th and 75th percentiles (bottom lines), before and after the

2006 institutional changes, respectively.

There are three notable patterns in Figure A3. First, the differences between the

5th and 95th percentiles under the median regulator scenario are smaller than those

under the baseline scenario, both before and after the 2006 changes. These findings

are not specific to the choice of percentiles: the 10th-90th ranges and the interquartile

ranges are all smaller under the median regulator than under the baseline scenario.

This is because the facility-specific marginal benefits of compliance and the expected

penalties are positively correlated, as shown in Panel (A) of Figure A4.

Second, the decreases in these point-wise ranges under the median regulator sce-

nario are not very large, regardless of the negligence level, before the 2006 institutional

changes. To be specific, the ratio of the 5th-95th range under the median regulator

scenario to that under the baseline scenario varies from 0.72 to 0.84.
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Table A9. Heterogenous Effects of Discretion: After the 2006 Changes

Dependent Variable: Any increase in the negligence level
due to a change to the one-size-fits-all policy?

Facility attributes County attributes
Major facility 0.255∗∗∗ (0.059) Irrigation use> 67% -0.290∗∗∗ (0.069)
Started in 1982-87 -0.074 (0.052) High income> $57K 0.304∗∗∗ (0.062)
Started after 1987 -0.0719 (0.088) High density> 722/mi2 -0.132∗∗ (0.057)
Advanced/tertiary 0.124∗∗∗ (0.043) Low density< 80/mi2 0.387∗∗∗ (0.078)
Cap. util.> 87% 0.017 (0.043) High approval> 50% 0.374∗∗∗ (0.071)
Service pop.< 10K 0.0002 (0.055) Regional water board FE†
Special district -0.060 (0.039) San Francisco Bay 0.437∗∗∗ (0.126)
High threat to water 0.174∗∗∗ (0.052) Central Coast 0.062 (0.116)

Weather & pollution Los Angeles -0.581∗∗∗ (0.134)
Precip.> 75th pct. -0.062 (0.056) Central Valley 0.295∗∗∗ (0.092)
Precip.< 25th pct. 0.392∗ (0.199) Colorado River 0.280 (0.196)
Swimmable 0.058 (0.073) Santa Ana -0.318∗∗ (0.133)

Constant -0.222 (0.180) San Diego 0.319∗ (0.193)
Adjusted R2 0.727

Notes: This table reports the OLS regression results where the dependent variable indi-
cates if the facility would increase its negligence level (and hence increase the frequency
of violations) under an alternative scenario compared to the baseline policy after the 2006
institutional changes. The unit of observation is each of the 221 facilities active in the first
quarter of 2005. Robust standard errors under the assumption that the estimated param-
eters are measured without error are in parenthesis; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. †
Region 1 (North Coast) is omitted.

Third, such decreases based on the regulator preference estimates after the 2006

institutional changes are relatively large. For example, the ratio of the 5th-95th range

under the median regulator scenario to that under the baseline scenario varies from

0.38 to 0.45. This is rationalized by the fact that the correlation between the facility-

level marginal benefits of compliance and the expected penalties is larger before the

2006 changes than after them, as can be seen in Panel (A) of Figure A4. In a similar

vein, the correlation between the regulator marginal benefit estimates and the facility

marginal cost estimates decreases after the 2006 changes (Panel (B)).

E.6. Regulator Costs. We compute the regulator’s expected costs, as specified in

(4), for each facility, conditional on the attributes, xi,t. The regulator’s costs consist

of three components. One such component is the compliance costs:∫ θ(xi,t)

0

θ
{
b [ā(xi,t)|xi,t]− b [a∗(θ|xi,t)|xi,t]

}
f(θ|xi,t)dθ. (A.9)
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Figure A3. Dispersion of Penalty Schedules
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Notes: Panel (A) shows the point-wise differences between the 5th and 95th percentiles of penalty

schedules across the 221 facilities active in the first quarter of 2005 under the baseline scenario and

the median regulator scenario (top lines), the 10th and 90th percentiles (middle lines), and the

25th and 75th percentiles (bottom lines), before the 2006 institutional changes. Panel (B) is for the

periods after the 2006 changes.

Figure A4. Disparities in Penalties and Regulator Preferences: Revisited
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(b) Vs. Facility Marginal Compliance Costs

Notes: Panel (A) shows the scatter plot of the estimated marginal benefit of compliance as perceived
by the regulator for each facility at the average negligence level before the 2006 institutional changes
(a = 1.08) and the expected penalty at the same negligence level. Panel (B) shows the scatter plot
of the estimated marginal benefit and cost of compliance for each facility.



REGULATOR PREFERENCES AND EXPERTISE 71

Table A10. Regulator Expected Costs

Compliance External Enforcement Total

(1) Baseline 2,539.2 4,734.8 1,816.6 9,090.7

(2) Median regulator 2,378.3 5,369.5 1,647.6 9,395.5

(3) Uniform penalty 2,783.4 4,505.6 1,954.6 9,243.5

(4) Linear penalty 2,703.5 4,434.8 2,143.6 9,282.0

(5) No enforcement costs 3,429.7 3,534.6 2,820.5 9,834.8

(6) Green regulator 4,902.6 2,474.5 3,306.7 10,683.8

Notes: This table presents the average value across facilities of each component
of the regulator’s expected costs for the baseline and the five counterfactual
scenarios of Table 6. The table reports the results based on the estimates for
the period prior to the 2006 institutional changes.

Another component is the external costs of violations:

γj(xi,t)

∫ θ(xi,t)

0

a∗(θ|xi,t)f(θ|xi,t)dθ, (A.10)

for j ∈ {pre, post}. The third component is the enforcement costs:

ψj(xi,t)

∫ θ(xi,t)

0

e∗[a∗(θ|xi,t)|xi,t]f(θ|xi,t)dθ

= ψj(xi,t)

∫ θ(xi,t)

0

(
θb [a∗(θ|xi,t)|xi,t]−

∫ θ(xi,t)

0

b[a∗(v|xi,t)|xi,t]dv
)
f(θ|xi,t)dθ

= ψj(xi,t)

∫ θ(xi,t)

0

(∫ a∗(θ|xi,t)

0

θ∗(a|xi,t)b′ (a|xi,t) da
)
f(θ|xi,t)dθ, (A.11)

for j ∈ {pre, post}, where θ∗(·|xi,t) is the inverse of a∗(·|xi,t). The first equality

in (A.11) follows from (7), and the second equality from integration by parts and

change of variables. We estimate (A.9)–(A.11) for each facility, using our estimates

of b′(·|xi,t), a∗(·|xi,t), and f(θ|xi,t). We approximate θ(xi,t) and ā(xi,t) by the ninety-

ninth percentile of the estimated distributions of types and negligence levels, condi-

tional on xi,t, respectively.

Table A10 presents the average values of the estimates of (A.9)–(A.11) across the

221 facilities in our sample. For a fair comparison of the regulator costs across the

baseline and the counterfactual scenarios, we use the estimated regulator preference

parameters γpre(xi,t) and ψpre(xi,t) in all scenarios. For this reason, for example, the

enforcement costs in Row (5) are nonzero.

We find that the policies reducing regulatory discretion in comparison to the base-

line scenario—namely, the uniform policy and the linear policy (Rows (3) and (4) of
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Table A10)—would increase the regulator’s expected costs by about 2-3 percent. In

the green regulator scenario, facilities would increase compliance by 51 percent (Row

(5) of Table 6) at the expense of doubling compliance and enforcement costs (Row

(6) of Table A10), relative to the baseline scenario. However, external costs would

decrease by half, and the total expected regulator costs would increase by 18 percent.

E.7. Extra Counterfactual Analyses. Table A11 shows the results of five addi-

tional counterfactual analyses that are not included in Table 6. Row (1) presents

the equilibrium violation frequency and penalty statistics in the scenario in which

facilities face a hypothetical regulator whose assessment of external violation costs

is the median value of γ for all facilities, but who continues to recognize the dif-

ferent enforcement costs at the estimated ψ values for each facility. The regulator

considered in Row (2) is the opposite of that of Row (1): her enforcement cost is the

median value of ψ for all facilities, but she perceives external violation costs at the

estimated value of γ for each facility. We find that the dispersion of the equilibrium

penalty stringency, as measured by the standard deviation of the expected penalties

across the facilities for the average negligence level (ā = 1.08), decreases under either

regime, relative to the baseline case. But the decrease in the Row (2) scenario, 8.8

percent, is almost twice as large as that in Row (1), 4.5 percent. These results suggest

that heterogeneity in enforcement costs are more important than variation in external

violation costs in explaining penalty disparities.

To illustrate the benefits for the regulator of being able to individually consider

the attributes of each facility, we consider penalty schedules that (i) are tailored

to facility and local attributes, and (ii) would achieve the same average violation

frequency across the facilities as the uniform policy considered in Row (2) of Table 6,

in Section 6.5.1. There may be many such schedules, and we consider a particularly

simple example, as described in Appendix D.1. Row (3) of Table A11 presents the

results. The mean penalties would decrease by 1.2 percent compared to the baseline

scenario, and would be lower than the mean penalties under the uniform policy by

|(1− 0.012)/1.013− 1| ≈ 2.5 percent.

Row (4) of Table A11 provides the results of a counterfactual scenario in which

each facility faces the linear penalty that would lead to the same expected number

of violations as in the baseline scenario. The details on the implementation of this

counterfactual are in Appendix D.2. We find that the mean penalties would increase

by 10 percent compared to the baseline scenario, although the negligence level induced

by either policy is the same for all facilities.
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Table A11. Extra Counterfactual Analyses

Violation Frequency Penalty
Mean SD Mean Disparity

(1) Homogenous γ 0.113 0.322 -0.081 -0.045

(2) Homogenous ψ 0.068 -0.005 -0.015 -0.088

(3) Sub-optimal tailored -0.061 0.060 -0.012 -0.153

(4) Sub-optimal linear 0.000 0.000 0.101 -0.106

(5) Doubled enforcement costs 0.238 0.239 -0.178 -0.001

Notes: This table presents the results of five extra counterfactual scenarios. For each scenario,
we report the proportional changes, relative to the baseline scenario, in the following four
statistics: the mean and the standard deviation of the equilibrium violation frequency across
facilities; the mean of the equilibrium expected penalties; and the standard deviation of the
equilibrium penalties at an identical negligence level (a = 1.08) across facilities, as a measure
of disparities in equilibrium penalty stringency. In Row (1), every facility is under a regulator
whose marginal external cost of violations (γ) is at the median across all facilities, while her
marginal enforcement costs (ψ) vary across facilities at the estimated values. The regulator
considered in Row (2) is the opposite: the regulator’s ψ is identical across all facilities, at the
median value, and her γ varies, at the estimated values. The penalty schedule of Row (3)
achieves the same average violation frequency as the uniform policy, but is tailored to facility
and local attributes. In Row (4), the penalty schedule is a linear penalty schedule designed to
induce each facility to choose the same negligence level as the baseline. In the scenario in Row
(5), the marginal enforcement costs ψ are doubled. The table reports the results based on the
estimates for the period prior to the 2006 institutional changes.

Figure A5. Enforcement Costs and Marginal Penalties
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Notes: This graph presents the equilibrium marginal expected penalties, e′(·), as a function of the

level of negligence, for a facility whose marginal external cost is at the 75th percentile ($4,550,

indicated as a dotted line). The solid line is for the the baseline prior to the 2006 changes, and the

dashed line is for the case where the marginal enforcement cost (ψ) for that facility is doubled.
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As discussed in 4.3, the presence of enforcement costs, coupled with the information

asymmetry between a regulator and a facility, creates a gap between the first-best

and the equilibrium negligence levels. To assess the importance of enforcement costs,

we also consider a regulator that has higher enforcement costs than in the baseline

scenario. Specifically, for each facility, the regulator considered in Row (5) of Table

A11 has the same marginal external costs of violations (γ) as in the baseline case,

but her enforcement costs (ψ) are doubled. Higher enforcement costs would increase

the equilibrium level of violation frequency, by 24 percent compared to the baseline

scenario, and reduce the equilibrium penalties by 18 percent. Figure A5 shows that

this increase in the equilibrium violation frequencies is driven by a lower marginal

penalty for relatively mild offense, despite a steeply higher marginal penalty for serious

offenses, relative to the baseline scenario. The figure presents, for a facility, the

equilibrium marginal expected penalties as a function of the level of negligence, e′(·),
under both the baseline and the doubled-ψ scenarios. This pattern is not limited

to the particular facility shown in the figure, and illustrates the regulator’s optimal

response in designing the penalty schedule to an increase in enforcement costs, as

emphasized by Mookherjee and Png (1994).

Appendix F. Sensitivity Analyses

This Appendix assesses the sensitivity of our findings to some of the assumptions

made in our main empirical analysis. First, we develop and estimate an extension

of the model that explicitly incorporates information about violation severity. Here,

the negligence level set by a facility affects not only the number but also the severity

of violations, and the regulator perceives the social costs of severe and non-severe

violations differently. In further sensitivity analyses, we consider alternative choices

on the length of the penalty window, the sample selection, and the covariates.

F.1. Alternative Specification 1: Endogenous Violation Severity.

F.1.1. Model. As in the model presented in the main text, a facility has privately

known type θ, drawn from a distribution F (·). The facility sets a negligence level a,

which affects the frequency and the severity of violations. Differently from the model

in the main text, each occurred violation may be severe or not. Denote by k ∈ N
and m ∈ N, respectively, the total number of violations and the number of severe

violations by a facility in a period. Also, let ι ∈ R be a random variable representing

features of the occurred violations that are not captured by k and m. We make
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the following assumption concerning the relationship between negligence levels and

violation outcomes:

Assumption A1. k ∼ Poisson(a); m|k ∼ Binomial(k, s(a)); and ι ⊥ a.

After the violations occur, (k,m, ι) are observed by both the regulator and the

facility. Hence the penalty schedule is a function of (k,m, ι), which we denote by

ε(·, ·, ·). Let e(a) ≡ E[ε(k,m, ι)|a]. Like in the main text, we assume that the regulator

chooses e(·), since, for any continuous e(·), there exists an enforcement schedule

ε(·, ·, ·) that implements e(·). We revisit this assumption below, in our discussion of

identification. The facility derives compliance costs θ[b(ā)− b(a)] from the negligence

level a. The facility’s objective function is thus given by (2). We allow the social

costs of violations, as perceived by the regulator, to depend on (k,m, ι). Specifically,

let us denote these costs by c(k,m, ι). The total regulator’s expected costs are∫ θ

0

(
θ{b(ā)− b[a(θ)]}+ E [c(k,m, ι)|a(θ)] + ψe [a(θ)]

)
f(θ)dθ.

By defining h(a) ≡ E[c(k,m, ι)|a], we can write the regulator’s objective function as

(4). Under Assumptions 1 and 2, the optimality conditions derived in the main text

still hold in the extended model.

F.1.2. Identification. In addition to the observables described in the main text, we

assume that the data report the severity of each occurred violation. In our estimation,

we use an indicator of whether the violation is classified by the water boards as a

priority, as explained in the notes in Table 2, to measure severity. Like in the main

text, we consider a vector x of observed facility attributes, and thus all primitives

and the equilibrium objects of the model are allowed to vary with x. The regulator

may implement the expected enforcement function e(·; x) using a variety of schedules

ε(·, ·, ·; x). In the following lemma, we consider a particular schedule:

Lemma A2. Let e(a; x) be a continuous function with domain a ∈ [0, a], where a <∞,

and fix any vector x. Then, for any δ > 0, there exists ε1(·, ·; x) : N × N → R and

ε2(·) : R→ R such that

sup
a∈[0,a]

|e(a; x)− E[ε1(k,m; x) + ε2(ι)|a,x]| < δ,

and E[ε2(ι)|k,m,x] = 0 for any (k,m).

Proof. Following the same argument as in Lemma A1, we can show that, for every

continuous e(·; x), there is a function ε1(·, ·; x) such that e(a) ≈ E[ε1(k,m; x)|a,x] for
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any a ∈ [0, a]. Given that, an alternative schedule, ε(k,m, ι,x) ≡ ε1(k,m,x) + ε2(ι)

such that E[ε2(ι)|a,x] = 0 implements e(·; x) as well. Under the assumption that

ι ⊥ a (Assumption A1), E[ε2(ι)|a,x] = E[ε2(ι)|x]. Therefore, any ε2(·) that satisfies

E[ε2(ι)|k,m,x] = 0, along with ε1(·, ·,x), also implements e(·; x). �

Given the lemma, we make the following assumption:

Assumption A2. The regulator, among the schedules that implement e(a; x) for any

a ∈ [0, ā] and x, employs a schedule of the following form, ε(k,m, ι; x) ≡ ε1(k,m; x)+

ε2(ι), with E[ε2(ι)|k,m,x] = 0 for any (k,m).

Under this assumption, as k, m, x, and the assigned penalties are observable,

ε1(k,m,x) is directly identified from the data—and so is e(·; x). Regarding the dis-

tribution of negligence, Lemma 1 still holds under Assumption A1, which allows us

to apply the same strategy as in the main text for the identification of Gj(·; x).

The additional primitive to be recovered in the extended model is s(·), the prob-

ability that each occurred violation is severe, as a function of the negligence level a.

We impose the following parametric assumption concerning this function:

Assumption A3. The probability s(a) that an occurred violation is severe, condi-

tional on the facility setting a negligence equal to a, is Φ (p0 + p1a), where Φ(·) is the

standard normal CDF.

Under Assumption A3, the identification of s(·) consists of identifying the parame-

ters p0 and p1, which we achieve by exploiting the relationship between the proportion

of severe violations and the negligence distribution in the pre- and post-2006 periods.

Recall that the penalty schedules ε1,j(k,m,x) for j ∈ {pre, post} are directly identi-

fied from the data. Having identified p0, p1, we identify ej(·; x), the expected penalty

as a function of negligence, as

ej(a; x) ≡
∞∑
k=0

k∑
m=0

exp(−a)Φ [p0 + p1a]m {1− Φ [p0 + p1a]}k−m

ζ!(k − ζ!)
ε1,j(k,m,x).

The rest of the identification argument follows the steps from the main text. Under

Assumptions 1-3, Proposition 2 holds. Under Assumptions 1–5, Proposition 3 is valid.

F.1.3. Estimation. We adopt the same parametric assumptions on the distribution of

negligence as in the basic model: The number of violations by a facility with covari-

ates x in period j ∈ {pre, post} follows a negative binomial distribution with mean

exp (β0,j + β1x) and variance exp (β0,j + β1x) [1 + ∆(z)−1 exp (β0,j + β1x)], where the



REGULATOR PREFERENCES AND EXPERTISE 77

term ∆(z) = exp(zδ) and z is a subset of x. Define βj ≡ (β0,j, β1), for j ∈ {pre, post},
and let g(·|x; δ, βj) be the density function of negligence levels implied by the param-

eters δ, βpre and βpost, conditional on x.

We estimate the severity parameters p0 and p1 by maximum likelihood. Specifi-

cally, under Assumptions A1 and A3, we can write the joint distribution of (k,m),

conditional on the negligence level a, as

Pr(k,m|a; p0, p1) =
ak exp(−a)

k!

(
k

m

)
Φ (p0 + p1a)m [1− Φ (p0 + p1a)]k−m.

We can then write the joint distribution of (k,m) for a facility, conditional on x, as

Pr(k,m; p0, p1, δ, βj,x) =

∫
Pr(k,m|a; p0, p1)g(a|x; δ, βj)da,

for j ∈ {pre, post}. Denote by δ̂, β̂pre and β̂post, respectively, the estimates of δ, βpre

and βpost presented in the main text. Under the assumptions above, these estimates

are consistent. A maximum likelihood estimator of p0 and p1 is then

(p̂0, p̂1) = arg max
p0,p1

∑
t

∑
i

log

[∫
Pr(ki,t,mi,t|a; p0, p1)g(a|xi,t; δ̂, β̂j)da

]
,

where mi,t is the number of severe violations by facility i in period t. To estimate the

enforcement functions, we extend specification (13) as follows:

η∗1i,t = xi,tφ1,x + 1{t>2006}φ1,post + φ1,kki,t + φ1,mmi,t + u1i,t,

log η∗2i,t = log
[
exp (xi,tφ2,x) ki,t + φ2,k2k

2
i,t + φ2,mmi,t

]
+ u2i,t,

and εi,t =

η∗2i,t if η∗1i,t ≥ 0,

0 otherwise,
(A.12)

where (u1,i,t, u2,i,t)’s are i.i.d. draws from a bivariate normal distribution with mean

zero, independent of (ki,t,mi,t,xi,t). By Assumption A2, we have that ε1,pre(k,m,x) =

E[εi,t|k,m,x, t < 2006] and ε1,post(k,m,x) = E[εi,t|k,m,x, t > 2006]. Therefore, the

difference between the observed penalty amount and the predicted penalty amount—

i.e.,(εi,t − ε1,j(k,m,x)), where j = pre for t < 2006 and j = post for t > 2006—is

ε2(ιi,t), or the part of the enforcement schedule associated with the violation aspects

that are not observed in the data. With the parameters in (A.12), denoted by φ,

we compute ε1,j(k,m,x;φ) for j ∈ {pre, post}. We obtain estimates φ̂ by maximum

likelihood. We then estimate the expected penalty for a facility with covariates x, as
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a function of the negligence level a, by

êj(a|x) ≡ exp(−a)
∞∑
k=0

k∑
m=0

Φ (p̂0 + p̂1a)m [1− Φ (p̂0 + p̂1a)]k−m

ζ!(k − ζ!)
ε1,j(k,m,x; φ̂).

Having estimates for the enforcement function and the distribution of negligence, we

proceed with the estimation of the model primitives, as in the main text.

F.2. Other Sensitivity Analyses. We consider four other alternative specifications

of our model. In alternative specification 2, we estimate the penalty schedule by

considering all penalties within three years of the occurrence of each violation, as

opposed to the four years used in the original results. This change allows us to use a

longer period of data for the penalty schedule estimation in the first step. Specifically,

we employ the penalties for the violations of 2000–2002 (2009-2011) to estimate the

penalty schedule before (after) the 2006 institutional changes, instead of 2000–2001

(2009–2010), as in the original results.

In alternative specification 3, we change the unit of observation from a facility-

quarter to a facility-semester. For a given period, a facility draws its cost type and

determines the level of negligence; and a regulator sets a penalty schedule over the

violations during the period. A quarter reflects the distinct precipitation patterns

across four seasons in California. A semester, however, may also be a suitable period

to consider, because, among all 1,605 penalty actions imposed on domestic wastewater

treatment facilities in 2000-2014, the median period of violations comprised by an

unique penalty action (either an ACL or a settlement in court) is 7 months.

The results presented in the main text are based on estimates of the penalty sched-

ule in which we truncate facility-quarter years with more than 25 violation. Alterna-

tive specification 4 and alternative specification 5 address the estimation of the model

with truncations at 20 and 30 violations, respectively.

Finally, alternative specification 6 considers a more flexible estimator of the neg-

ligence distribution. This specification incorporates into z, the vector of covariates

that determines the overdispersion coefficient ∆(z), all the elements of x used in the

estimation of other parts of the model.

The results from alternative specification 1-6 are in Tables A12 and A13. All

the main results are similar to our original estimates. Specifically, the marginal

compliance cost estimates and regulator preferences are very similar to those presented

in the main text. Perhaps most importantly, the main results of our counterfactual

analysis in Section 6.5 are robust to these six alternative specifications.



REGULATOR PREFERENCES AND EXPERTISE 79

Table A12. Sensitivity Analyses: Model Primitive Estimates

Sensitivity: Primitives
Marginal Environmental Cost Enforcement Cost

Compliance per Violation (γ) per Penalty (ψ)
Cost Before After Before After

Original specification
Median 1431.0 3589.4 3157.1 0.865 0.204
Interquartile range 1090.3 1633.0 916.5 0.483 0.220

Alternative specification 1: Endogenous severity
Median 1401.4 3517.1 3054.9 0.712 0.184
Interquartile range 1086.1 1525.5 959.6 0.545 0.215

Alternative specification 2: Penalty within 3 years
Median 1324.5 3315.1 3042.2 0.922 0.237
Interquartile range 1160.5 1192.8 861.9 0.557 0.256

Alternative specification 3: Semester-long period
Median 1252.8 3717.1 3215.7 0.636 0.130
Interquartile range 1261.2 1277.9 972.5 0.652 0.130

Alternative specification 4: Violations truncated at 20
Median 1438.7 3856.5 3308.3 0.999 0.235
Interquartile range 1015.9 1927.6 850.9 0.367 0.229

Alternative specification 5: Violations truncated at 30
Median 1454.5 3455.6 3114.6 0.696 0.174
Interquartile range 1094.3 1639.4 957.6 0.585 0.219

Alternative specification 6: Flexible overdispersion
Median 1024.9 3608.5 3194.2 0.702 0.185
Interquartile range 1379.1 1480.4 954.3 0.551 0.214
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Table A13. Sensitivity Analyses: Counterfactuals

Median Uniform Linear ψ = 0 Green
Regulator Penalty Penalty Regulator

(1) (2) (3) (4) (5)

Equilibrium violation frequency
Original specification

Proportional change in Mean 0.055 -0.062 -0.064 -0.230 -0.511
Proportional change in SD 0.274 -0.191 -0.048 -0.335 -0.408

Alternative specification 1: Endogenous severity
Proportional change in Mean -0.015 -0.071 -0.053 -0.284 -0.553
Proportional change in SD 0.192 -0.179 -0.037 -0.356 -0.440

Alternative specification 2: Penalty within 3 years
Proportional change in Mean 0.047 -0.062 -0.053 -0.209 -0.491
Proportional change in SD 0.161 -0.240 -0.065 -0.289 -0.463

Alternative specification 3: Six months-long period
Proportional change in Mean -0.010 -0.022 -0.035 -0.185 -0.558
Proportional change in SD 0.088 -0.133 -0.040 -0.211 -0.528

Alternative specification 4: Violations truncated at 20
Proportional change in Mean 0.077 -0.062 -0.071 -0.246 -0.510
Proportional change in SD 0.275 -0.203 -0.067 -0.337 -0.426

Alternative specification 5: Violations truncated at 30
Proportional change in Mean -0.002 -0.075 -0.051 -0.213 -0.508
Proportional change in SD 0.200 -0.194 -0.040 -0.331 -0.398

Alternative specification 6: Flexible overdispersion
Proportional change in Mean 0.051 -0.168 -0.043 -0.173 -0.483
Proportional change in SD 0.173 -0.267 -0.013 -0.269 -0.406

Equilibrium penalty
Original specification

Proportional change in Mean -0.063 -0.072 0.527 0.485 3.081
Proportional change in Disparity -0.110 -1.000 -0.070 0.271 -0.807

Alternative specification 1: Endogenous severity
Proportional change in Mean 0.024 -0.048 0.450 0.465 2.460
Proportional change in Disparity -0.170 -1.000 0.245 0.155 -0.917

Alternative specification 2: Penalty within 3 years
Proportional change in Mean -0.134 -0.037 0.507 0.620 2.624
Proportional change in Disparity -0.228 -1.000 -0.059 -0.098 -0.774

Alternative specification 3: Six months-long period
Proportional change in Mean -0.003 0.046 0.543 0.632 4.489
Proportional change in Disparity -0.183 -1.000 -0.031 0.140 -0.604

Alternative specification 4: Violations truncated at 20
Proportional change in Mean -0.063 -0.051 0.569 0.715 3.203
Proportional change in Disparity -0.021 -1.000 0.230 0.288 -0.747

Alternative specification 5: Violations truncated at 30
Proportional change in Mean -0.016 -0.070 0.393 0.708 2.964
Proportional change in Disparity -0.179 -1.000 0.149 0.279 -0.846

Alternative specification 6: Flexible overdispersion
Proportional change in Mean -0.024 -0.039 0.433 0.735 2.880
Proportional change in Disparity -0.133 -1.000 0.166 0.184 -0.774


